论文标题
视频无监督的领域适应深度学习:一项全面调查
Video Unsupervised Domain Adaptation with Deep Learning: A Comprehensive Survey
论文作者
论文摘要
由于引入了大规模数据集和深度学习的表示,诸如行动识别之类的视频分析任务已获得了越来越多的智能医疗保健领域应用程序的研究兴趣。但是,由于培训公共视频数据集(源视频域)和现实世界视频(目标视频域),直接部署到现实世界应用程序时,经过现有数据集训练的视频模型会遭受重大性能降解。此外,随着视频注释的高昂成本,使用未标记的视频进行培训更为实用。为了解决高度视频注释成本中的性能降解并解决问题,引入了视频无监督的域适应性(VUDA),以使标记的源域中的视频模型从标记的源域转化为未标记的目标域,从而减轻视频域的变化,从而改善视频模型的普遍性和可移植性。本文通过深度学习调查了VUDA的最新进展。我们从VUDA的动机开始,其次是其定义,以及在不同情况下封闭设置VUDA和VUDA的方法的最新进展,以及当前用于VUDA研究的基准数据集。最终,提供了未来的方向来促进进一步的VUDA研究。该调查的存储库可在https://github.com/xuyu0010/awesome-video-domain-audaptation上提供。
Video analysis tasks such as action recognition have received increasing research interest with growing applications in fields such as smart healthcare, thanks to the introduction of large-scale datasets and deep learning-based representations. However, video models trained on existing datasets suffer from significant performance degradation when deployed directly to real-world applications due to domain shifts between the training public video datasets (source video domains) and real-world videos (target video domains). Further, with the high cost of video annotation, it is more practical to use unlabeled videos for training. To tackle performance degradation and address concerns in high video annotation cost uniformly, the video unsupervised domain adaptation (VUDA) is introduced to adapt video models from the labeled source domain to the unlabeled target domain by alleviating video domain shift, improving the generalizability and portability of video models. This paper surveys recent progress in VUDA with deep learning. We begin with the motivation of VUDA, followed by its definition, and recent progress of methods for both closed-set VUDA and VUDA under different scenarios, and current benchmark datasets for VUDA research. Eventually, future directions are provided to promote further VUDA research. The repository of this survey is provided at https://github.com/xuyu0010/awesome-video-domain-adaptation.