论文标题
扭曲的高旋转理论和基质模型的方法
Twistor approach to higher-spin theories and matrix model
论文作者
论文摘要
我们讨论了将扭曲理论与高旋转理论和IKKT-矩阵模型联系起来的最新努力。从对四维目标空间中的高旋转代数HS进行简要审查开始,我们阐明了如何在(非共同)扭曲器空间上对HS值的截面/全体形态微分形式进行编码。这提供了一种有效的方法,可以通过(非交通性)扭曲空间的某些动作在时空中构建局部高旋转理论。值得注意的是,在扭曲理论框架内获得的一些高自旋理论可以在平坦的空间中具有非平凡的散射幅度。
We discuss recent endeavours in connecting twistor theory to higher-spin theories and the IKKT- matrix model. Starting with a brief review on higher-spin algebra hs in four-dimensional target space, we elucidate how higher-spin symmetry can be encoded in hs-valued sections/holomorphic differential forms on (non-commutative) twistor space. This provides an efficient way to construct local higher-spin theories in spacetime from some actions on (non-commutative) twistor space. Remarkably, some higher-spin theories obtained within the framework of twistor theory can have non-trivial scattering amplitudes in flat space.