论文标题

特征值分析和Legendre Dual-Petrov-Galerkin方法用于初始值问题

Eigenvalue Analysis and Applications of the Legendre Dual-Petrov-Galerkin Methods for Initial Value Problems

论文作者

Kong, Desong, Shen, Jie, Wang, Li-Lian, Xiang, Shuhuang

论文摘要

在本文中,我们表明,光谱离散矩阵的特征值和特征向量是由$ m $ m $ th级初始值问题(ivp)的legendre dual-petrov-galerkin(ldpg)方法产生的$ t = -1的常规初始条件与广义Bessel多项式(GBPS)相关联。分析的基本思想是正确构建解决方案及其双空间的基础函数,以使$ m $ th衍生物的矩阵是一个身份矩阵,然后质量矩阵随后相同或近似等于GBPS与特定的Integer参数的三项复发的Jacobi矩阵。这使我们能够表征特征值分布并识别特征向量。作为副产品,我们能够通过将其重新将其重新定义为Petrov-Galerkin配方,以与Legendre Points(在1980年代进行了研究)(在1980年代进行了研究)的非常有限的已知结果有关。此外,我们提出了两种用于计算GBP的零的稳定算法,并使用矩阵对角线化开发了一种用于进化PDE的一般时空光谱方法,该方法仅限于少数未知数,这是由于不良条件而导致的,但由于QZ分解完全是序列序列,或者是数字稳定的序列序列序列,该计算是数字稳定的。我们提供了足够的数值结果,以证明一些有趣的线性和非线性波问题示例的高精度和鲁棒性。

In this paper, we show that the eigenvalues and eigenvectors of the spectral discretisation matrices resulted from the Legendre dual-Petrov-Galerkin (LDPG) method for the $m$th-order initial value problem (IVP): $u^{(m)}(t)=σu(t),\, t\in (-1,1)$ with constant $σ\not=0$ and usual initial conditions at $t=-1,$ are associated with the generalised Bessel polynomials (GBPs). The essential idea of the analysis is to properly construct the basis functions for the solution and its dual spaces so that the matrix of the $m$th derivative is an identity matrix, and the mass matrix is then identical or approximately equals to the Jacobi matrix of the three-term recurrence of GBPs with specific integer parameters. This allows us to characterise the eigenvalue distributions and identify the eigenvectors. As a by-product, we are able to answer some open questions related to the very limited known results on the collocation method at Legendre points (studied in 1980s) for the first-order IVP, by reformulating it into a Petrov-Galerkin formulation. Moreover, we present two stable algorithms for computing zeros of the GBPs, and develop a general space-time spectral method for evolutionary PDEs using either the matrix diagonalisation, which is restricted to a small number of unknowns in time due to the ill-conditioning but is fully parallel, or the QZ decomposition which is numerically stable for a large number of unknowns in time but involves sequential computations. We provide ample numerical results to demonstrate the high accuracy and robustness of the space-time spectral methods for some interesting examples of linear and nonlinear wave problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源