论文标题

可解释的胎儿超声质量评估与渐进概念瓶颈模型

Explainable fetal ultrasound quality assessment with progressive concept bottleneck models

论文作者

Lin, Manxi, Feragen, Aasa, Mikolaj, Kamil, Bashir, Zahra, Tolsgaard, Martin Grønnebæk, Christensen, Anders Nymark

论文摘要

胎儿超声筛查扫描的质量直接影响生物识别测量的精度。但是,获得高质量的扫描是劳动密集型的,高度依赖于操作员的技能。考虑到在超声波中广泛存在的较低对比度和成像伪像,即使是专门的深度学习模型也可能容易从图像中的混杂信息中学习。在本文中,我们提出了一种用于胎儿超声质量评估的整体且可解释的方法,在该方法中,我们通过将人类可读的``概念''引入任务中,并模仿顺序专家决策过程。该模型的层次信息流从语义上有意义的领域中学习概念,并模仿概念的概念,并模仿概念的概念,并模仿概念的概念,并模仿概念的概念,并模仿概念的概念,并模仿概念的概念,并模仿了概念的概念,并模仿了概念的概念:与决策任务直接相关,我们认为质量评估在更具挑战性但更现实的环境中,并具有良好的图像识别,这表明我们的模型在内部数据集中超过了同等的概念模型,并且在两个公共基准上显示出更好的概括性。

The quality of fetal ultrasound screening scans directly influences the precision of biometric measurements. However, acquiring high-quality scans is labor-intensive and highly relies on the operator's skills. Considering the low contrastiveness and imaging artifacts that widely exist in ultrasound, even a dedicated deep-learning model can be vulnerable to learning from confounding information in the image. In this paper, we propose a holistic and explainable method for fetal ultrasound quality assessment, where we design a hierarchical concept bottleneck model by introducing human-readable ``concepts" into the task and imitating the sequential expert decision-making process. This hierarchical information flow forces the model to learn concepts from semantically meaningful areas: The model first passes through a layer of visual, segmentation-based concepts, and next a second layer of property concepts directly associated with the decision-making task. We consider the quality assessment to be in a more challenging but more realistic setting, with fine-grained image recognition. Experiments show that our model outperforms equivalent concept-free models on an in-house dataset, and shows better generalizability on two public benchmarks, one from Spain and one from Africa, without any fine-tuning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源