论文标题

基于MDL原理,在非感知负载监控中多次尺度事件检测

Multi-timescale Event Detection in Nonintrusive Load Monitoring based on MDL Principle

论文作者

Liu, Bo, Zhang, Jianfeng, Luan, Wenpeng, Liu, Zishuai, Yu, Yixin

论文摘要

负载事件检测是基于事件的非侵入载荷监控(NILM)的基本步骤。但是,具有固定参数的现有事件检测方法可能无法应对事件的固有多时间尺度特征,其事件检测精度很容易受到负载波动的影响。在这方面,本文扩展了我们先前设计的两阶段事件检测框架,并根据最小描述长度(MDL)的原理提出了一种新颖的多时间尺度事件检测方法。在第一阶段完成类似阶梯的事件检测之后,为第二阶段设计了具有可变长度滑动窗口的长频率事件检测方案,该方案旨在在不同的时间尺度上提供同一事件的观察和表征。在此,汇总负载数据中的上下文信息是通过图案发现挖掘的,然后基于MDL原理,为不同的事件选择了适当的观察量表,并确定相应的检测结果。在后处理步骤中,提出了基于语音活动检测(VAD)的负载波动位置方法,以识别和删除波动引起的不合理事件。基于新提出的评估指标,对公共和私人数据集的比较测试表明,我们的方法可实现跨不同场景各种设备事件的更高检测准确性和完整性。

Load event detection is the fundamental step for the event-based non-intrusive load monitoring (NILM). However, existing event detection methods with fixed parameters may fail in coping with the inherent multi-timescale characteristics of events and their event detection accuracy is easily affected by the load fluctuation. In this regard, this paper extends our previously designed two-stage event detection framework, and proposes a novel multi-timescale event detection method based on the principle of minimum description length (MDL). Following the completion of step-like event detection in the first stage, a long-transient event detection scheme with variable-length sliding window is designed for the second stage, which is intended to provide the observation and characterization of the same event at different time scales. In that, the context information in the aggregated load data is mined by motif discovery, and then based on the MDL principle, the proper observation scales are selected for different events and the corresponding detection results are determined. In the post-processing step, a load fluctuation location method based on voice activity detection (VAD) is proposed to identify and remove the unreasonable events caused by fluctuations. Based on newly proposed evaluation metrics, the comparison tests on public and private datasets demonstrate that our method achieves higher detection accuracy and integrity for events of various appliances across different scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源