论文标题
拓扑过渡诱导的巨型横向热电效应多晶的狄拉克半含量MG3BI2
A topological transition-induced giant transverse thermoelectric effect in polycrystalline Dirac semimetal Mg3Bi2
论文作者
论文摘要
为了实现热电能量转化,拓扑材料中的大型横向热电效应至关重要。但是,拓扑电子结构与横向热电效应之间的一般关系尚不清楚,从而限制了新型横向热电材料的合理设计。本文中,我们展示了拓扑过渡引起的巨型横向热电效应,在多晶Mn掺杂的MG3+ΔBI2材料中,该材料具有竞争性较大的横向热电器(617 UV/K),功率因数,功率因数(20393 UWM-1K-2),MagnEtoresistance(20393 UWM-1K-2),磁势稳定(1660000%)和Electer-etmority(16600%),以及2528255。在存在MN掺杂的情况下,化学压力和无序作用的调节触发了高性能,从而诱导从拓扑绝缘体到狄拉克半学的过渡。在这项工作中描述的高性能多晶Mn掺杂的MG3+δBI2可稳健地通过拓扑相转变来增强横向热电效应,为横向热电学的材料设计铺平了新的途径。
To achieve thermoelectric energy conversion, a large transverse thermoelectric effect in topological materials is crucial. However, the general relationship between topological electronic structures and transverse thermoelectric effect remains unclear, restricting the rational design of novel transverse thermoelectric materials. Herein, we demonstrate a topological transition-induced giant transverse thermoelectric effect in polycrystalline Mn-doped Mg3+δBi2 material, which has a competitively large transverse thermopower (617 uV/K), power factor (20393 uWm-1K-2), magnetoresistance (16600%), and electronic mobility (35280cm2V-1S-1). The high performance is triggered by the modulation of chemical pressure and disorder effects in the presence of Mn doping, which induces the transition from a topological insulator to a Dirac semimetal. The high-performance polycrystalline Mn-doped Mg3+δ Bi2 described in this work robustly boosts transverse thermoelectric effect through topological phase transition, paving a new avenue for the material design of transverse thermoelectricity.