论文标题

停止刺激性放松:适用于白矮人二进制初始数据

Halted-Pendulum Relaxation: Application to White Dwarf Binary Initial Data

论文作者

Kaltenborn, M. Alexander R., Falato, Michael J., Korobkin, Oleg, Sagert, Irina, Even, Wesley P.

论文摘要

研究紧凑型星二进制物及其合并是确定可观察到的瞬变的祖细胞不可或缺的一部分。如今,通常通过最先进的计算流体动力学代码来研究紧凑型恒星合并。一种这种数值技术,即平滑的粒子流体动力学(SPH),经常是为其出色的质量,能量和动量保护而选择的。真空的自然处理以及代表高度不规则形态的能力使SPH成为研究紧凑型二进制二进制和合并的绝佳工具。对于许多情况,包括二进制系统,模拟的结果仅与初始条件一样准确。对于SPH,必须确保粒子定期分布,代表初始密度曲线,但没有远距离相关性。高频局部运动和低频全局动力学形式的粒子噪声必须被抑制。抑制后者的计算密集型可能与实际模拟一样密集。我们讨论了一种新的直接放松方法,即停止的倾斜松弛(HPR),以删除SPH粒子构型的全局振荡模式。结合代表重力和轨道力的有效外部电势的结合,我们表明HPR在有效放松SPH颗粒到所需的密度分布并消除全局振荡模式方面具有出色的性能。我们比较了经常使用放松方法的方法,并在其Roche Lobe溢出限制下在白色矮人二进制模型上进行测试。我们强调了与其他一般松弛方法相比,我们在实现准确的初始条件及其对实现圆形轨道和现实的积聚率方面的重要性。

Studying compact star binaries and their mergers is integral to determining progenitors for observable transients. Today, compact-star mergers are typically studied via state-of-the-art computational fluid dynamics codes. One such numerical technique, Smoothed Particle Hydrodynamics (SPH), is frequently chosen for its excellent mass, energy, and momentum conservation. The natural treatment of vacuum and the ability to represent highly irregular morphologies make SPH an excellent tool for the study of compact-star binaries and mergers. For many scenarios, including binary systems, the outcome of simulations is only as accurate as the initial conditions. For SPH, it is essential to ensure that the particles are distributed regularly, representing the initial density profile but without long-range correlations. Particle noise in the form of high-frequency local motion and low-frequency global dynamics must be damped out. Damping the latter can be as computationally intensive as the actual simulation. We discuss a new and straightforward relaxation method, Halted-Pendulum Relaxation (HPR), to remove global oscillation modes of SPH particle configurations. In combination with effective external potentials representing gravitational and orbital forces, we show that HPR has an excellent performance in efficiently relaxing SPH particles to the desired density distribution and removing global oscillation modes. We compare the method to frequently used relaxation approaches and test it on a white dwarf binary model at its Roche lobe overflow limit. We highlight the importance of our method in achieving accurate initial conditions and its effect on achieving circular orbits and realistic accretion rates when compared with other general relaxation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源