论文标题

单变量分层问题的启发式算法

Heuristic Algorithm for Univariate Stratification Problem

论文作者

Brito, José, Semaan, Gustavo, de Lima, Leonardo, Fadel, Augusto

论文摘要

在抽样理论中,分层对应于调查中使用的技术,该技术允许将人群分割成均匀的亚群(地层),以产生更高水平的统计数据。特别是,本文提出了一种启发式方法来解决单变量分层问题 - 在文献中广泛研究。它的一个版本设置了地层的数量和精度水平,并试图确定定义这种层的极限,以最大程度地减少分配给层的样本量。开发了基于随机优化方法和精确优化方法的基于启发式方法,以实现这一目标。通过计算实验,考虑了其在文献中其他作品中使用的各种人群中的应用,根据20种结合了不同数量的地层和精度水平的情况来评估这种启发式的性能。从对获得结果的分析中,可以验证启发式的性能在文献中的四种算法中的性能优于94%以上的病例,尤其是关于Kozak和Lavallee-Hidiroglou的已知算法。

In sampling theory, stratification corresponds to a technique used in surveys, which allows segmenting a population into homogeneous subpopulations (strata) to produce statistics with a higher level of precision. In particular, this article proposes a heuristic to solve the univariate stratification problem - widely studied in the literature. One of its versions sets the number of strata and the precision level and seeks to determine the limits that define such strata to minimize the sample size allocated to the strata. A heuristic-based on a stochastic optimization method and an exact optimization method was developed to achieve this goal. The performance of this heuristic was evaluated through computational experiments, considering its application in various populations used in other works in the literature, based on 20 scenarios that combine different numbers of strata and levels of precision. From the analysis of the obtained results, it is possible to verify that the heuristic had a performance superior to four algorithms in the literature in more than 94% of the cases, particularly concerning the known algorithms of Kozak and Lavallee-Hidiroglou.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源