论文标题

结构增强的深钢筋学习,用于最佳传输计划

Structure-Enhanced Deep Reinforcement Learning for Optimal Transmission Scheduling

论文作者

Chen, Jiazheng, Liu, Wanchun, Quevedo, Daniel E., Li, Yonghui, Vucetic, Branka

论文摘要

大规模分布式动态过程的远程状态估计在行业4.0应用中起着重要作用。在本文中,通过利用最佳调度策略的结构特性的理论结果,我们开发了一个结构增强的深度加固学习(DRL)框架,以最佳计划多传感器远程估计系统以达到最小的总体估计均值估计误差(MSE)。特别是,我们提出了一种结构增强的动作选择方法,该方法倾向于选择遵守政策结构的行动。这更有效地探索了动作空间,并提高了DRL药物的学习效率。此外,我们引入了一个结构增强的损失函数,以增加不遵循政策结构的行动的惩罚。新的损失函数指导DRL快速收敛到最佳策略结构。我们的数值结果表明,与基准DRL算法相比,提出的结构增强的DRL算法可以节省训练时间50%,并将远程估计MSE减少10%至25%。

Remote state estimation of large-scale distributed dynamic processes plays an important role in Industry 4.0 applications. In this paper, by leveraging the theoretical results of structural properties of optimal scheduling policies, we develop a structure-enhanced deep reinforcement learning (DRL) framework for optimal scheduling of a multi-sensor remote estimation system to achieve the minimum overall estimation mean-square error (MSE). In particular, we propose a structure-enhanced action selection method, which tends to select actions that obey the policy structure. This explores the action space more effectively and enhances the learning efficiency of DRL agents. Furthermore, we introduce a structure-enhanced loss function to add penalty to actions that do not follow the policy structure. The new loss function guides the DRL to converge to the optimal policy structure quickly. Our numerical results show that the proposed structure-enhanced DRL algorithms can save the training time by 50% and reduce the remote estimation MSE by 10% to 25%, when compared to benchmark DRL algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源