论文标题

自适应边缘到边缘的交互学习用于点云分析

Adaptive Edge-to-Edge Interaction Learning for Point Cloud Analysis

论文作者

Zhao, Shanshan, Gong, Mingming, Li, Xi, Tao, Dacheng

论文摘要

近年来,深入学习各种点云分析任务,例如分类和语义细分,取得了巨大的成功。由于点云数据很少且分布不规则,因此点云数据处理的一个关键问题是从本地区域提取有用的信息。为了实现这一目标,以前的作品主要通过学习每对相邻点之间的关系来提取本地区域的特征。但是,这些作品忽略了当地区域中边缘之间的关系,该边缘编码本地形状信息。关联相邻的边缘可能会使点对点关系更加了解本地结构和更健壮的关系。为了探索边缘之间关系的作用,本文提出了一种新型的自适应边缘到边缘交互学习模块,该模块旨在通过对局部区域的边缘到边缘相互作用进行自适应来增强点对点关系。我们进一步将模块扩展到对称版本,以更彻底地捕获本地结构。利用所提出的模块,我们分别开发了两个用于分割和形状分类任务的网络。几个公共点云数据集上的各种实验证明了我们方法对点云分析的有效性。

Recent years have witnessed the great success of deep learning on various point cloud analysis tasks, e.g., classification and semantic segmentation. Since point cloud data is sparse and irregularly distributed, one key issue for point cloud data processing is extracting useful information from local regions. To achieve this, previous works mainly extract the points' features from local regions by learning the relation between each pair of adjacent points. However, these works ignore the relation between edges in local regions, which encodes the local shape information. Associating the neighbouring edges could potentially make the point-to-point relation more aware of the local structure and more robust. To explore the role of the relation between edges, this paper proposes a novel Adaptive Edge-to-Edge Interaction Learning module, which aims to enhance the point-to-point relation through modelling the edge-to-edge interaction in the local region adaptively. We further extend the module to a symmetric version to capture the local structure more thoroughly. Taking advantage of the proposed modules, we develop two networks for segmentation and shape classification tasks, respectively. Various experiments on several public point cloud datasets demonstrate the effectiveness of our method for point cloud analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源