论文标题
在低磁性雷诺数下的晶格玻尔兹曼磁流体动力学的双重释放时间模型
Double Multiple-Relaxation-Time model of Lattice-Boltzmann Magnetohydrodynamics at Low Magnetic Reynolds Numbers
论文作者
论文摘要
我们开发了一种改进的晶格 - 玻璃体数值方案,以在低磁性雷诺数的状态下求解磁性水力动力学(MHD)方程,该方程基于Navier-Stokes方程的明显的Galilean协变量建模。通常沿着最简单的现象学描述(单个弛豫时间(SRT)模型)设计了晶格玻尔兹曼方法中的磁感应方程的模拟。为了应对SRT框架的众所周知的稳定性困难,我们介绍了一种用于解决磁性感应方程的多余时间技术技术,并结合了一种新的边界条件方法,以应对曲线边界上的磁性玻尔兹曼类似磁性玻璃体样分布的字体。作为应用程序,我们研究了与MHD管流中瞬时流动状态的描述有关的开放问题,但符合不均匀的磁场。
We develop an improved lattice-Boltzmann numerical scheme to solve magnetohydrodynamic (MHD) equations in the regime of low magnetic Reynolds numbers, grounded on a manifestly Galilean covariant modeling of the Navier-Stokes equations. The simulation of the magnetic induction equation within the lattice-Boltzmann approach to MHD has been usually devised along the lines of the simplest phenomenological description, the single relaxation time (SRT) model. In order to deal with well-known stability difficulties of the SRT framework, we introduce, alternatively, a multi-relaxation-time technique for the solution of the magnetic induction equation, combined with a novel boundary condition method to cope with the subtleties of magnetic Boltzmann-like distributions on curved boundaries. As an application, we investigate open issues related to the description of transient flow regimes in MHD pipe flows, subject to non-uniform magnetic fields.