论文标题

放出离线RL流:在标准化流的潜在空间中训练保守的代理

Let Offline RL Flow: Training Conservative Agents in the Latent Space of Normalizing Flows

论文作者

Akimov, Dmitriy, Kurenkov, Vladislav, Nikulin, Alexander, Tarasov, Denis, Kolesnikov, Sergey

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Offline reinforcement learning aims to train a policy on a pre-recorded and fixed dataset without any additional environment interactions. There are two major challenges in this setting: (1) extrapolation error caused by approximating the value of state-action pairs not well-covered by the training data and (2) distributional shift between behavior and inference policies. One way to tackle these problems is to induce conservatism - i.e., keeping the learned policies closer to the behavioral ones. To achieve this, we build upon recent works on learning policies in latent action spaces and use a special form of Normalizing Flows for constructing a generative model, which we use as a conservative action encoder. This Normalizing Flows action encoder is pre-trained in a supervised manner on the offline dataset, and then an additional policy model - controller in the latent space - is trained via reinforcement learning. This approach avoids querying actions outside of the training dataset and therefore does not require additional regularization for out-of-dataset actions. We evaluate our method on various locomotion and navigation tasks, demonstrating that our approach outperforms recently proposed algorithms with generative action models on a large portion of datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源