论文标题
从昨天开始学习:一种半监督的持续学习方法,用于监督有限的文本到SQL任务流
Learn from Yesterday: A Semi-Supervised Continual Learning Method for Supervision-Limited Text-to-SQL Task Streams
论文作者
论文摘要
传统的文本到SQL研究仅限于具有固定尺寸培训和测试集的单个任务。当面对现实应用程序中常见的一系列任务时,现有方法与不足的监督数据和高重新培训成本的问题困难。前者倾向于对新任务的看不见的数据库造成过度拟合,而后者对模型的过去任务进行了完整的审查,从而忘记了学习的SQL结构和数据库模式。为了解决这些问题,本文提议在文本到SQL任务流中集成半监督学习(SSL)和持续学习(CL),并依次提供两个有希望的解决方案。第一个解决方案的香草是进行自我训练,通过预测的当前任务的伪标记实例来增强监督培训数据,同时用情节记忆重播代替完整的体积retrest,以平衡培训效率与先前任务的执行。改进的解决方案SFNET利用Cl和SSL之间的固有连接。它使用内存中的过去信息来帮助当前的SSL,同时在内存中添加高质量的伪实例以改善未来的重播。两个数据集上的实验表明,SFNET在多个指标上优于仅使用SSL的广泛使用和仅CL的基准。
Conventional text-to-SQL studies are limited to a single task with a fixed-size training and test set. When confronted with a stream of tasks common in real-world applications, existing methods struggle with the problems of insufficient supervised data and high retraining costs. The former tends to cause overfitting on unseen databases for the new task, while the latter makes a full review of instances from past tasks impractical for the model, resulting in forgetting of learned SQL structures and database schemas. To address the problems, this paper proposes integrating semi-supervised learning (SSL) and continual learning (CL) in a stream of text-to-SQL tasks and offers two promising solutions in turn. The first solution Vanilla is to perform self-training, augmenting the supervised training data with predicted pseudo-labeled instances of the current task, while replacing the full volume retraining with episodic memory replay to balance the training efficiency with the performance of previous tasks. The improved solution SFNet takes advantage of the intrinsic connection between CL and SSL. It uses in-memory past information to help current SSL, while adding high-quality pseudo instances in memory to improve future replay. The experiments on two datasets shows that SFNet outperforms the widely-used SSL-only and CL-only baselines on multiple metrics.