论文标题

部分可观测时空混沌系统的无模型预测

Boosting Novel Category Discovery Over Domains with Soft Contrastive Learning and All-in-One Classifier

论文作者

Zang, Zelin, Shang, Lei, Yang, Senqiao, Wang, Fei, Sun, Baigui, Xie, Xuansong, Li, Stan Z.

论文摘要

事实证明,无监督的域适应性(UDA)在将知识从富含标签的源域转移到标签范围目标域中非常有效。但是,目标域中其他新型类别的存在导致开放式结构域适应(ODA)和通用域适应性(UNDA)的发展。现有的ODA和UNDA方法将所有新型类别视为一个单一的,统一的未知类别,并试图在训练中检测到它。但是,我们发现域的方差可以在无监督的数据增强中导致更重要的视野,这会影响对比度学习的有效性(CL),并导致模型在新型类别发现中过度自信。为了解决这些问题,提出了一个名为“软对比度的多合一网络”(SAN)的框架,以实施ODA和UNDA任务。 SAN包括一种新型的基于数据启发的软性对比学习(SCL)损失,以微调主链以进行特征转移和更具人为直觉的分类器,以提高新的类发现能力。 SCL损失削弱了数据增强视图噪声问题的不利影响,该问题在域转移任务中得到了放大。多合一的(AIO)分类器克服了当前主流封闭设置和开放式分类器的过度自信问题。可视化和消融实验证明了提出的创新的有效性。此外,ODA和UNDA的广泛实验结果表明,SAN的表现优于现有的最新方法。

Unsupervised domain adaptation (UDA) has proven to be highly effective in transferring knowledge from a label-rich source domain to a label-scarce target domain. However, the presence of additional novel categories in the target domain has led to the development of open-set domain adaptation (ODA) and universal domain adaptation (UNDA). Existing ODA and UNDA methods treat all novel categories as a single, unified unknown class and attempt to detect it during training. However, we found that domain variance can lead to more significant view-noise in unsupervised data augmentation, which affects the effectiveness of contrastive learning (CL) and causes the model to be overconfident in novel category discovery. To address these issues, a framework named Soft-contrastive All-in-one Network (SAN) is proposed for ODA and UNDA tasks. SAN includes a novel data-augmentation-based soft contrastive learning (SCL) loss to fine-tune the backbone for feature transfer and a more human-intuitive classifier to improve new class discovery capability. The SCL loss weakens the adverse effects of the data augmentation view-noise problem which is amplified in domain transfer tasks. The All-in-One (AIO) classifier overcomes the overconfidence problem of current mainstream closed-set and open-set classifiers. Visualization and ablation experiments demonstrate the effectiveness of the proposed innovations. Furthermore, extensive experiment results on ODA and UNDA show that SAN outperforms existing state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源