论文标题

复杂网络中几何图灵模式的出现

Emergence of geometric Turing patterns in complex networks

论文作者

van der Kolk, Jasper, García-Pérez, Guillermo, Kouvaris, Nikos E., Serrano, M. Ángeles, Boguñá, Marián

论文摘要

长期以来,由竞争性差异颗粒之间的相互作用引起的图灵模式长期以来一直是描述自然界中非平衡自我组织的重要概念,并且已经在许多化学和生物系统中进行了广泛的研究。从历史上看,这些模式已在扩展的系统和晶格中进行了研究。最近,发现图灵的不稳定是在具有无规模分布和小世界财产的网络中产生拓扑模式,尽管显然没有几何组织。尽管已经找到了简单网络模型中明确的几何模式的提示(例如瓦特斯 - 斯特罗加茨),但异质复杂网络中几何图灵模式的确切性质和形态的问题仍未得到解决。在这项工作中,我们研究了几何随机图模型框架中的Turing不稳定性,其中网络拓扑是由潜在的几何空间来解释的。我们证明,不仅可以观察到几何模式,还可以通过研究退火图拉普拉斯式的特征向量来估算它们的波长。最后,我们表明图灵模式可以在真实网络的几何嵌入中找到。这些结果表明,即使关联的动态过程仅由网络拓扑确定,网络的功能及其隐藏的几何形状之间也存在着密切的联系。

Turing patterns, arising from the interplay between competing species of diffusive particles, has long been an important concept for describing non-equilibrium self-organization in nature, and has been extensively investigated in many chemical and biological systems. Historically, these patterns have been studied in extended systems and lattices. Recently, the Turing instability was found to produce topological patterns in networks with scale-free degree distributions and the small world property, although with an apparent absence of geometric organization. While hints of explicitly geometric patterns in simple network models (e.g Watts-Strogatz) have been found, the question of the exact nature and morphology of geometric Turing patterns in heterogeneous complex networks remains unresolved. In this work, we study the Turing instability in the framework of geometric random graph models, where the network topology is explained by an underlying geometric space. We demonstrate that not only can geometric patterns be observed, their wavelength can also be estimated by studying the eigenvectors of the annealed graph Laplacian. Finally, we show that Turing patterns can be found in geometric embeddings of real networks. These results indicate that there is a profound connection between the function of a network and its hidden geometry, even when the associated dynamical processes are exclusively determined by the network topology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源