论文标题
使用卷积自动编码器回声状态网络建模时空湍流动力学
Modelling spatiotemporal turbulent dynamics with the convolutional autoencoder echo state network
论文作者
论文摘要
湍流的时空动力学是混乱的,难以预测。这使得精确,稳定的降低订单模型具有挑战性。本文的总体目的是提出湍流状态的非线性分解,以减少动力学的阶段。我们将湍流分为空间问题和时间问题。首先,我们计算潜在空间,这是湍流动力学生存的多种多样(即,它是湍流吸引子的数值近似)。潜在空间由一系列非线性过滤操作找到,这些操作由卷积自动编码器(CAE)执行。 CAE提供了空间中的分解。其次,我们预测了由回声状态网络(ESN)执行的潜在空间中湍流状态的时间演变。 ESN及时提供分解。第三,通过组装CAE和ESN,我们获得了一个自主动力学系统:卷积自动编码器回声状态网(CAE-ESN)。这是湍流的减少阶模型。我们在二维流量上测试CAE-ESN。我们表明,经过训练,CAE-ESN(i)发现湍流的潜在空间表示,其自由度的比物理空间少于自由度。 (ii)时间准确和统计学上预测准碘和湍流状态的流量; (iii)对于不同的流程(雷诺数)是可靠的; (iv)与解决管理方程相比,(iv)不到计算时间的1%来预测湍流。这项工作为非线性分解和减少数据的湍流建模开辟了新的可能性。
The spatiotemporal dynamics of turbulent flows is chaotic and difficult to predict. This makes the design of accurate and stable reduced-order models challenging. The overarching objective of this paper is to propose a nonlinear decomposition of the turbulent state for a reduced-order representation of the dynamics. We divide the turbulent flow into a spatial problem and a temporal problem. First, we compute the latent space, which is the manifold onto which the turbulent dynamics live (i.e., it is a numerical approximation of the turbulent attractor). The latent space is found by a series of nonlinear filtering operations, which are performed by a convolutional autoencoder (CAE). The CAE provides the decomposition in space. Second, we predict the time evolution of the turbulent state in the latent space, which is performed by an echo state network (ESN). The ESN provides the decomposition in time. Third, by assembling the CAE and the ESN, we obtain an autonomous dynamical system: the convolutional autoncoder echo state network (CAE-ESN). This is the reduced-order model of the turbulent flow. We test the CAE-ESN on a two-dimensional flow. We show that, after training, the CAE-ESN (i) finds a latent-space representation of the turbulent flow that has less than 1% of the degrees of freedom than the physical space; (ii) time-accurately and statistically predicts the flow in both quasiperiodic and turbulent regimes; (iii) is robust for different flow regimes (Reynolds numbers); and (iv) takes less than 1% of computational time to predict the turbulent flow than solving the governing equations. This work opens up new possibilities for nonlinear decompositions and reduced-order modelling of turbulent flows from data.