论文标题
Carroll Fermions二维
Carroll fermions in two dimensions
论文作者
论文摘要
Carroll对称性是通用空表面的非常强大的特征,因为它以其光速度消失的光版本代替了通常的庞加莱代数。这些对称性在零歧管的物理学中发现了普遍的应用,因为它们在各种情况下,从黑洞地平线到凝结物质系统,而费米的速度消失了。在这项工作中,我们专注于生活在二维($ 2D $)的无效歧管上,并以系统的方式探索相关场理论的Carroll不变结构。这些费米子的免费无质量版本显示出$ 2D $共形的Carroll或等效于$ 3D $ BONDI-METZNER-SACHS(BMS)代数作为对称性。由于歧管的退化性质,我们显示了两种不同类别的克利福德代数。我们还发现,在两个维度上有两个不同的费米昂动作。我们研究这两种理论的离散和连续对称性,并使用真空的最高权重表示进行量化。我们还讨论了如何通过无限的增强或坐标上的堕落线性变换来不断变形$ 2D $ FREE FERMION CFTS的对称性,从而导致奇异点的相应BMS不变理论。
Carroll symmetry is a very powerful characteristic of generic null surfaces, as it replaces the usual Poincaré algebra with a vanishing speed of light version thereof. These symmetries have found universal applications in the physics of null manifolds as they arise in diverse situations ranging from black hole horizons to condensed matter systems with vanishing Fermi velocities. In this work, we concentrate on fermions living on two dimensional ($2d$) null manifolds and explore the Carroll invariant structure of the associated field theories in a systematic manner. The free massless versions of these fermions are shown to exhibit $2d$ Conformal Carroll or equivalently the $3d$ Bondi-Metzner-Sachs (BMS) algebra as their symmetry. Due to the degenerate nature of the manifold, we show the presence of two distinct classes of Clifford Algebras. We also find that in two dimensions there are two distinct fermion actions. We study discrete and continuous symmetries of both theories, and quantize them using highest weight representation of the vacuum. We also discuss how the symmetries of $2d$ free fermion CFTs can be continually deformed by infinite boosts or degenerate linear transformations on coordinates, leading to the corresponding BMS invariant theory at singular points.