论文标题
折叠式旋转巨星的密度曲线有利于长伽马射线爆发
Density Profiles of Collapsed Rotating Massive Stars Favor Long Gamma-Ray Bursts
论文作者
论文摘要
长持续的伽马射线爆发(LGRB)起源于相对论的准直流 - 喷气机 - 从倒塌的大量恒星中钻出。准确地对此过程进行建模,需要逼真的恒星曲线,以使喷气机传播并爆发。大多数以前的研究都使用简单的功率定律或大型恒星的爆发前模型。但是,LGRB模型的相关恒星曲线实际上是,恒星的核心后,恒星已崩溃以形成一个紧凑的对象。为了自言自语地计算这种出色的轮廓,我们使用开源代码GR1D来模拟核心折叠过程,以获得低金属性,旋转,巨大的恒星祖细胞的套件,这些祖细胞经历了化学均匀的进化。我们的模型跨越了一系列零时代的主序(ZAMS)质量:$ M_ \ MATHRM {ZAMS} = 13、18、21、25、35、40 $和$ 45 M_ \ odot $。所有这些模型,在核心爆发的开始时,具有陡峭的密度曲线,$ρ\ propto r^{ - α} $,$α\约2.5 $,这将导致与lgrb observables不一致的喷射。我们遵循七个模型中的四个崩溃,直到它们形成BHS和其他三个原始恒星(PNSS)。我们发现,在所有模型中,新形成的BH或PNS之外的密度曲线由$α\ $α\约1.35 { - } 1.55 $的平坦功率定律很好地代表。这种平坦的密度曲线有利于成功形成和BH驱动的喷气机的突破,实际上需要重现LGRB的可观察性能。 LGRB的未来模型应使用较浅的\ textit {complapse}的恒星轮廓来初始化,而不是在这里呈现的图谱,而不是通常使用的更陡峭的爆发前轮廓。
Long-duration gamma-ray bursts (lGRBs) originate in relativistic collimated outflows -- jets -- that drill their way out of collapsing massive stars. Accurately modeling this process requires realistic stellar profiles for the jets to propagate through and break out of. Most previous studies have used simple power laws or pre-collapse models for massive stars. However, the relevant stellar profile for lGRB models is in fact that of a star after its core has collapsed to form a compact object. To self-consistently compute such a stellar profile, we use the open-source code GR1D to simulate the core-collapse process for a suite of low-metallicity, rotating, massive stellar progenitors that have undergone chemically homogeneous evolution. Our models span a range of zero-age main sequence (ZAMS) masses: $M_\mathrm{ZAMS} = 13, 18, 21, 25, 35, 40$, and $45 M_\odot$. All of these models, at the onset of core-collapse, feature steep density profiles, $ρ\propto r^{-α}$ with $α\approx 2.5$, which would result in jets that are inconsistent with lGRB observables. We follow the collapse of four out of our seven models until they form BHs and the other three proto-neutron stars (PNSs). We find, across all models, that the density profile outside of the newly-formed BH or PNS is well-represented by a flatter power law with $α\approx 1.35{-}1.55$. Such flat density profiles are conducive to successful formation and breakout of BH-powered jets and, in fact, required to reproduce observable properties of lGRBs. Future models of lGRBs should be initialized with shallower \textit{post-collapse} stellar profiles like those presented here instead of the much steeper pre-collapse profiles that are typically used.