论文标题

支持尺寸估计:调理的力量

Support Size Estimation: The Power of Conditioning

论文作者

Chakraborty, Diptarka, Kumar, Gunjan, Meel, Kuldeep S.

论文摘要

我们考虑估计分销$ d $的支撑大小的问题。我们的调查是通过分配测试的镜头进行的,并寻求了解有条件采样的功能(称为CON​​D),其中允许在其中查询以任意子集$ S $为条件的给定分布。这项工作的主要贡献是为COND模型引入一种新的方法,以使用信息理论和通信复杂性中使用强大的工具。 我们的方法使我们能够为COND模型及其扩展获得令人惊讶的强下限。 1)我们弥合了上部($ o(\ log \ log \ log n + \ frac {1} {ε^2})$)与下限$ω(\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ log \ log n})$之间的长期差距。令人惊讶的是,我们表明,即使我们了解实际概率以及COND样本,仍然需要$ω(\ log \ log \ log \ log n + \ frac {1} {ε^2 \ log(1/ε)})$查询。 2)我们获得了配备额外甲骨文的COND的第一个非平凡的下限,该甲板揭示了样本的条件概率(据我们所知,这是所有先前研究的所有模型):特别是,我们证明了$ω(\ log \ log \ log \ log \ log \ log \ log n + \ frac {1}} {1} {1} {1} {ε^2 \ quiery是1/^(1/^)。

We consider the problem of estimating the support size of a distribution $D$. Our investigations are pursued through the lens of distribution testing and seek to understand the power of conditional sampling (denoted as COND), wherein one is allowed to query the given distribution conditioned on an arbitrary subset $S$. The primary contribution of this work is to introduce a new approach to lower bounds for the COND model that relies on using powerful tools from information theory and communication complexity. Our approach allows us to obtain surprisingly strong lower bounds for the COND model and its extensions. 1) We bridge the longstanding gap between the upper ($O(\log \log n + \frac{1}{ε^2})$) and the lower bound $Ω(\sqrt{\log \log n})$ for COND model by providing a nearly matching lower bound. Surprisingly, we show that even if we get to know the actual probabilities along with COND samples, still $Ω(\log \log n + \frac{1}{ε^2 \log (1/ε)})$ queries are necessary. 2) We obtain the first non-trivial lower bound for COND equipped with an additional oracle that reveals the conditional probabilities of the samples (to the best of our knowledge, this subsumes all of the models previously studied): in particular, we demonstrate that $Ω(\log \log \log n + \frac{1}{ε^2 \log (1/ε)})$ queries are necessary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源