论文标题

标准模型中的Electroweak Monopole-Antimonopole对

Electroweak Monopole-antimonopole Pair in the Standard Model

论文作者

Zhu, Dan, Wong, Khai-Ming, Wong, Guo-Quan

论文摘要

我们提出了第一个对应于SU(2)$ \ times $ u(1)Weinberg-Salam(WS)理论中的Cho-Maison Monopole和抗巨焦(MAP)的第一个数值解。单孔有限分开,而每个杆携带磁性电荷$ \ pm4π/e $。正极位于上半球,而负极位于下半球。调查了Cho-Maison地图的一系列Weinberg角度,$ 0.4675 \ leq \tanθ_w\ leq10 $,以及Higgs自耦合,$ 0 \leqβ\leqβ\ leq1.7704 $。计算和分析了数值解的磁偶极矩($μ_m$)和极点分离($ d_z $)。然而,由于单孔位置的点奇异性,系统的总能量是无限的。

We present the first numerical solution that corresponds to a pair of Cho-Maison monopole and antimonopole (MAP) in the SU(2)$\times$U(1) Weinberg-Salam (WS) theory. The monopoles are finitely separated, while each pole carries magnetic charge $\pm 4π/e$. The positive pole is situated in the upper hemisphere, whereas the negative pole is in the lower hemisphere. The Cho-Maison MAP was investigated for a range of Weinberg angle, $0.4675\leq\tanθ_W\leq10$, and Higgs self-coupling, $0\leqβ\leq1.7704$. Magnetic dipole moment ($μ_m$) and pole separation ($d_z$) of the numerical solutions are calculated and analyzed. Total energy of the system, however, is infinite due to point singularities at the locations of monopoles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源