论文标题

重新思考视觉学习者的隐性神经表示

Rethinking Implicit Neural Representations for Vision Learners

论文作者

Song, Yiran, Zhou, Qianyu, Ma, Lizhuang

论文摘要

隐式神经表示(INRS)具有强大的功能,可以参数化计算机视觉中的连续信号。但是,几乎所有INRS方法都限于低级任务,例如图像/视频压缩,超分辨率和图像生成。关于如何探索INR到高级任务和深层网络的问题仍然不足。现有的INR方法遇到了两个问题:1)INR的狭窄理论定义不适合高级任务; 2)缺乏深层网络的代表性功能。在上述事实的激励下,我们从新颖的角度重新重新制定了INR的定义,并提出了一个创新的隐式神经代表网络(INRN),这是INR的首次研究,以解决低级和高级任务。具体而言,我们为INRN中的基本块提供了三个关键设计,以及两种不同的堆叠方式和相应的损失功能。对低级任务(图像拟合)和高级视觉任务(图像分类,对象检测,实例分割)进行分析的广泛实验证明了所提出的方法的有效性。

Implicit Neural Representations (INRs) are powerful to parameterize continuous signals in computer vision. However, almost all INRs methods are limited to low-level tasks, e.g., image/video compression, super-resolution, and image generation. The questions on how to explore INRs to high-level tasks and deep networks are still under-explored. Existing INRs methods suffer from two problems: 1) narrow theoretical definitions of INRs are inapplicable to high-level tasks; 2) lack of representation capabilities to deep networks. Motivated by the above facts, we reformulate the definitions of INRs from a novel perspective and propose an innovative Implicit Neural Representation Network (INRN), which is the first study of INRs to tackle both low-level and high-level tasks. Specifically, we present three key designs for basic blocks in INRN along with two different stacking ways and corresponding loss functions. Extensive experiments with analysis on both low-level tasks (image fitting) and high-level vision tasks (image classification, object detection, instance segmentation) demonstrate the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源