论文标题
MSS-Depthnet:多步尖峰神经网络的深度预测
MSS-DepthNet: Depth Prediction with Multi-Step Spiking Neural Network
论文作者
论文摘要
事件摄像机由于其高时间分辨率和低功耗特性而被认为具有计算机视觉和机器人应用的巨大潜力。但是,事件摄像机的事件流输出具有异步,稀疏的特性,现有的计算机视觉算法无法处理。 Spiking神经网络是一种基于事件的新型计算范式,被认为非常适合处理事件摄像机任务。但是,对深SNN的直接培训遭受了降解问题。这项工作通过提出尖峰神经网络体系结构来解决这些问题,该架构具有新颖的残留块设计和多维注意模块,重点是深度预测问题。此外,针对SNN明确提出了一种新型的事件流表示方法。该模型的表现优于MVSEC数据集上相同大小的先前ANN网络,并显示出巨大的计算效率。
Event cameras are considered to have great potential for computer vision and robotics applications because of their high temporal resolution and low power consumption characteristics. However, the event stream output from event cameras has asynchronous, sparse characteristics that existing computer vision algorithms cannot handle. Spiking neural network is a novel event-based computational paradigm that is considered to be well suited for processing event camera tasks. However, direct training of deep SNNs suffers from degradation problems. This work addresses these problems by proposing a spiking neural network architecture with a novel residual block designed and multi-dimension attention modules combined, focusing on the problem of depth prediction. In addition, a novel event stream representation method is explicitly proposed for SNNs. This model outperforms previous ANN networks of the same size on the MVSEC dataset and shows great computational efficiency.