论文标题

DOLCE:限量角重建的基于模型的概率扩散框架

DOLCE: A Model-Based Probabilistic Diffusion Framework for Limited-Angle CT Reconstruction

论文作者

Liu, Jiaming, Anirudh, Rushil, Thiagarajan, Jayaraman J., He, Stewart, Mohan, K. Aditya, Kamilov, Ulugbek S., Kim, Hyojin

论文摘要

限量角度计算机断层扫描(LICT)是一种非破坏性评估技术,用于从安全到医学的各种应用中。乳中的有限角度覆盖范围通常是重建图像中严重伪影的主要来源,使其成为一个具有挑战性的反问题。我们提出了Dolce,这是一种新的基于深层模型的乳液框架,它使用条件扩散模型作为图像先验。扩散模型是最近的一类深层生成模型,由于其作为图像Denoisers的实现,它们相对容易训练。 DOLCE可以通过将数据 - 矛盾更新与扩散模型的采样更新集成,从而从严重的不采样数据中形成高质量的图像,该模型基于转换的有限角度数据。我们通过对几个具有挑战性的真实乳注数据集进行了广泛的实验,这些实验相同的预训练的DOLCE模型在急剧不同类型的图像上实现了SOTA性能。此外,我们表明,与标准的乳酸重建方法不同,Dolce自然可以通过生成与测量数据一致的多个样本来量化重建不确定性。

Limited-Angle Computed Tomography (LACT) is a non-destructive evaluation technique used in a variety of applications ranging from security to medicine. The limited angle coverage in LACT is often a dominant source of severe artifacts in the reconstructed images, making it a challenging inverse problem. We present DOLCE, a new deep model-based framework for LACT that uses a conditional diffusion model as an image prior. Diffusion models are a recent class of deep generative models that are relatively easy to train due to their implementation as image denoisers. DOLCE can form high-quality images from severely under-sampled data by integrating data-consistency updates with the sampling updates of a diffusion model, which is conditioned on the transformed limited-angle data. We show through extensive experimentation on several challenging real LACT datasets that, the same pre-trained DOLCE model achieves the SOTA performance on drastically different types of images. Additionally, we show that, unlike standard LACT reconstruction methods, DOLCE naturally enables the quantification of the reconstruction uncertainty by generating multiple samples consistent with the measured data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源