论文标题

基因表达编程的梯度信息和正则化,以开发数据驱动的物理封闭模型

Gradient Information and Regularization for Gene Expression Programming to Develop Data-Driven Physics Closure Models

论文作者

Waschkowski, Fabian, Li, Haochen, Deshmukh, Abhishek, Grenga, Temistocle, Zhao, Yaomin, Pitsch, Heinz, Klewicki, Joseph, Sandberg, Richard D.

论文摘要

在开发代数模型时学习准确的数值常数是进化算法的已知挑战,例如基因表达编程(GEP)。本文将自适应符号的概念介绍给Weatheritt和Sandberg(2016)的GEP框架,以开发高级物理封闭模型。自适应符号利用梯度信息在模型训练过程中学习本地最佳数值常数,我们研究了两种类型的非线性优化算法。这项工作的第二个贡献是实施两种正规化技术,以激励可实施和可解释的封闭模型的发展。我们应用$ l_2 $正则化来确保较小的数值常数并设计了一种新颖的复杂度度量,该指标通过自定义符号复杂性和多目标优化来支持低复杂性模型的开发。该扩展框架用于四种用例,即重新发现了萨瑟兰的粘度法,开发了层流火焰速度燃烧模型和训练两种类型的流体动力学湍流模型。在所有越来越复杂的用例中,模型的预测准确性和训练的收敛速度得到显着提高。这两种正则化方法对于开发可实施的封闭模型至关重要,我们证明了开发的湍流模型可以实质上改善了与最新模型相比的模拟。

Learning accurate numerical constants when developing algebraic models is a known challenge for evolutionary algorithms, such as Gene Expression Programming (GEP). This paper introduces the concept of adaptive symbols to the GEP framework by Weatheritt and Sandberg (2016) to develop advanced physics closure models. Adaptive symbols utilize gradient information to learn locally optimal numerical constants during model training, for which we investigate two types of nonlinear optimization algorithms. The second contribution of this work is implementing two regularization techniques to incentivize the development of implementable and interpretable closure models. We apply $L_2$ regularization to ensure small magnitude numerical constants and devise a novel complexity metric that supports the development of low complexity models via custom symbol complexities and multi-objective optimization. This extended framework is employed to four use cases, namely rediscovering Sutherland's viscosity law, developing laminar flame speed combustion models and training two types of fluid dynamics turbulence models. The model prediction accuracy and the convergence speed of training are improved significantly across all of the more and less complex use cases, respectively. The two regularization methods are essential for developing implementable closure models and we demonstrate that the developed turbulence models substantially improve simulations over state-of-the-art models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源