论文标题

大脑知情的转移学习用于分类建筑危害

Brain informed transfer learning for categorizing construction hazards

论文作者

Zhou, Xiaoshan, Liao, Pin-Chao

论文摘要

提出了转移学习范式,用于用于人脑和卷积神经网络(CNN)之间的“知识”转移,以进行施工危害分类任务。观看与CNN相同的图像(目标数据集)时,使用脑电图(EEG)测量来记录参与者的大脑活动。 CNN在脑电图数据上进行了预定,然后在施工场景图像上进行了微调。结果表明,与具有相同体系结构但在三类分类任务上随机初始化参数的网络相比,EEG预测的CNN的精度高9%。左侧皮层的大脑活动表现出最高的性能增长,因此表明危险识别期间高水平的认知处理。这项工作是通过通过市售脑部计算机界面记录的人脑信号学习来改善机器学习算法的一步。可以根据这种“保持人类循环”的方法有效地开发更广泛的视觉识别系统。

A transfer learning paradigm is proposed for "knowledge" transfer between the human brain and convolutional neural network (CNN) for a construction hazard categorization task. Participants' brain activities are recorded using electroencephalogram (EEG) measurements when viewing the same images (target dataset) as the CNN. The CNN is pretrained on the EEG data and then fine-tuned on the construction scene images. The results reveal that the EEG-pretrained CNN achieves a 9 % higher accuracy compared with a network with same architecture but randomly initialized parameters on a three-class classification task. Brain activity from the left frontal cortex exhibits the highest performance gains, thus indicating high-level cognitive processing during hazard recognition. This work is a step toward improving machine learning algorithms by learning from human-brain signals recorded via a commercially available brain-computer interface. More generalized visual recognition systems can be effectively developed based on this approach of "keep human in the loop".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源