论文标题
楼梯磁通渗透到超导扁平环中
Staircase penetration of magnetic flux into a superconducting flat ring
论文作者
论文摘要
我们分析了Meissner屏蔽电流在平坦的超导环中的分布,并定量地描述了磁性雪崩(树突)的穿透力。使用经常性过程,计算出外部字段$ h_ {ext} $,其中出现了穿孔(边缘交叉)雪崩。全面描述了被困在环内的平均场的楼梯依赖性,$ \ weft \ langle H \ rangle \ rangle $,vs. $ h_ {ext} $。楼梯斜率似乎是环形(边缘宽度与环直径比)的通用函数。穿透树突释放的热量随着每个穿孔的每个穿孔线性生长。通量固定(如果存在)会修改楼梯依赖性,并使步骤更小。我们的理论结果符合实验数据。
We analyzed the distribution of the Meissner shielding currents in a flat superconducting ring and quantitatively described the penetration of magnetic avalanches (dendrites) inside it. Using a recurrent procedure, the external field $H_{ext}$, in which a perforating (rim crossing) avalanche appears, is calculated. A staircase dependence of the mean field trapped inside a ring, $\left\langle H\right\rangle$, vs. $H_{ext}$, is comprehensively described. A staircase slope appears to be a universal function of a ring shape (rim width to ring diameter ratio). The heat released by a penetrating dendrite grows linearly with each next perforation. Flux pinning, if present, modifies a staircase dependence and makes steps smaller. Our theoretical results are in a good accordance with the experimental data.