论文标题
使用机器学习技术从遥远的Heliose震动图像中推断出太阳远处的无符号磁通量
Inferring Maps of the Sun's Far-side Unsigned Magnetic Flux from Far-side Helioseismic Images using Machine Learning Techniques
论文作者
论文摘要
太阳的冠状磁场和太阳风结构的准确建模需要太阳能全局磁场的输入,包括近边和远侧,但是无法直接观察到太阳的远处磁场。然而,太阳的远侧活性区域通常通过热震成像方法来监测,这只需要连续的近侧观测值。因此,尽管它们的空间分辨率相对较低,而且不确定性较大,但使用远面的Heliose震图估算远面的磁通图既可行又有用。在这项工作中,我们训练两个机器学习模型以实现这一目标。第一个机器学习训练对同时sdo/hmi观察到的磁性磁通映射和SDO/AIA观察的EUV 304 $Å$图像,所得模型可以将304 $Å$图像转换为磁性频率图。然后将该模型应用于立体声/EUVI观察到的遥远的304 $Å$图像,可用于大约4。3年的远面磁性磁力图。然后,将这些EUV转换的磁通图与同时远处的Heliose震动图像配对,以进行第二次机器学习训练,并且所得模型可以将远面的Heliose震动图像转换为磁性磁通图。这些热态派出的远侧磁通图在空间分辨率和准确性方面有局限性,每天都可以在空间分辨率和准确性方面限制,仅使用近方观察结果在太阳的远处提供有用的磁性信息。
Accurate modeling of the Sun's coronal magnetic field and solar wind structures require inputs of the solar global magnetic field, including both the near and far sides, but the Sun's far-side magnetic field cannot be directly observed. However, the Sun's far-side active regions are routinely monitored by helioseismic imaging methods, which only require continuous near-side observations. It is therefore both feasible and useful to estimate the far-side magnetic-flux maps using the far-side helioseismic images despite their relatively low spatial resolution and large uncertainties. In this work, we train two machine-learning models to achieve this goal. The first machine-learning training pairs simultaneous SDO/HMI-observed magnetic-flux maps and SDO/AIA-observed EUV 304$Å$ images, and the resulting model can convert 304$Å$ images into magnetic-flux maps. This model is then applied on the STEREO/EUVI-observed far-side 304$Å$ images, available for about 4.3 years, for the far-side magnetic-flux maps. These EUV-converted magnetic-flux maps are then paired with simultaneous far-side helioseismic images for a second machine-learning training, and the resulting model can convert far-side helioseismic images into magnetic-flux maps. These helioseismically derived far-side magnetic-flux maps, despite their limitations in spatial resolution and accuracy, can be routinely available on a daily basis, providing useful magnetic information on the Sun's far side using only the near-side observations.