论文标题

全球遇到本地:有效的多标签图像分类通过类别意识到的弱监督

Global Meets Local: Effective Multi-Label Image Classification via Category-Aware Weak Supervision

论文作者

Zhan, Jiawei, Liu, Jun, Tang, Wei, Jiang, Guannan, Wang, Xi, Gao, Bin-Bin, Zhang, Tianliang, Wu, Wenlong, Zhang, Wei, Wang, Chengjie, Xie, Yuan

论文摘要

可以将多标签图像分类分类为标签依赖性和基于区域的方法,这是一个具有挑战性的问题,由于复杂的基础对象布局。尽管基于区域的方法与标签依赖性方法相比,基于区域的方法遇到模型的通用性问题的可能性较小,但它们通常会产生数百种具有非歧视性信息的毫无意义或嘈杂的建议,并且本地化区域之间的上下文依赖性通常被忽略或过度减少。本文建立了一个统一的框架,以进行有效的嘈杂抑制作用,并在全球和本地功能之间进行互动以进行健壮的功能学习。具体而言,我们建议意识到类别的弱监督,以专注于不存在的类别,以便为本地特征学习提供确定性的信息,从而限制本地分支机构专注于更高质量的感兴趣区域。此外,我们开发了一个跨粒度注意模块,以探索全球和本地特征之间的互补信息,该模块可以建立不仅包含全球到本地的高级特征相关性,还包含局部到本地关系。这两个优点都可以提高整个网络的性能。在两个大规模数据集(MS-Coco and VOC 2007)上进行了广泛的实验表明,我们的框架比最先进的方法实现了卓越的性能。

Multi-label image classification, which can be categorized into label-dependency and region-based methods, is a challenging problem due to the complex underlying object layouts. Although region-based methods are less likely to encounter issues with model generalizability than label-dependency methods, they often generate hundreds of meaningless or noisy proposals with non-discriminative information, and the contextual dependency among the localized regions is often ignored or over-simplified. This paper builds a unified framework to perform effective noisy-proposal suppression and to interact between global and local features for robust feature learning. Specifically, we propose category-aware weak supervision to concentrate on non-existent categories so as to provide deterministic information for local feature learning, restricting the local branch to focus on more high-quality regions of interest. Moreover, we develop a cross-granularity attention module to explore the complementary information between global and local features, which can build the high-order feature correlation containing not only global-to-local, but also local-to-local relations. Both advantages guarantee a boost in the performance of the whole network. Extensive experiments on two large-scale datasets (MS-COCO and VOC 2007) demonstrate that our framework achieves superior performance over state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源