论文标题
无线传感的语义通信:RIS辅助编码和自我监管的解码
Semantic Communications for Wireless Sensing: RIS-aided Encoding and Self-supervised Decoding
论文作者
论文摘要
语义通信可以通过从源消息中提取的任务相关的语义信息来减少资源消耗。但是,当源消息用于各种任务时,例如,无线传感数据用于本地化和活动检测,由于处理复杂性的增加,很难实现语义通信技术。在本文中,我们提出了反向语义通信作为新范式。我们的目标不是从消息中提取语义信息,而是将与任务相关的源消息编码到用于数据传输或存储的超源消息中。在此范式之后,我们设计了一个使用三种算法,用于数据采样,可重新配置的智能表面(RIS)辅助编码和自我监督的解码的三种算法。具体而言,一方面,我们提出了一种新型的RIS硬件设计,用于将几个信号谱编码为一个元谱。为了选择用于实现有效编码的任务相关的信号谱,引入了语义哈希采样方法。另一方面,我们提出了一种自我监督的学习方法,用于解码元谱以获取原始信号光谱。使用从现实世界中收集的传感数据,我们表明,与编码之前的框架相比,我们的框架可以将数据量减少95%,而不会影响传感任务的完成。此外,与典型使用的均匀采样方案相比,提出的语义哈希采样方案可以在恢复感应参数时达到平均平方误差的67%。此外,实验结果表明,RIS的振幅响应矩阵可以加密传感数据。
Semantic communications can reduce the resource consumption by transmitting task-related semantic information extracted from source messages. However, when the source messages are utilized for various tasks, e.g., wireless sensing data for localization and activities detection, semantic communication technique is difficult to be implemented because of the increased processing complexity. In this paper, we propose the inverse semantic communications as a new paradigm. Instead of extracting semantic information from messages, we aim to encode the task-related source messages into a hyper-source message for data transmission or storage. Following this paradigm, we design an inverse semantic-aware wireless sensing framework with three algorithms for data sampling, reconfigurable intelligent surface (RIS)-aided encoding, and self-supervised decoding, respectively. Specifically, on the one hand, we propose a novel RIS hardware design for encoding several signal spectrums into one MetaSpectrum. To select the task-related signal spectrums for achieving efficient encoding, a semantic hash sampling method is introduced. On the other hand, we propose a self-supervised learning method for decoding the MetaSpectrums to obtain the original signal spectrums. Using the sensing data collected from real-world, we show that our framework can reduce the data volume by 95% compared to that before encoding, without affecting the accomplishment of sensing tasks. Moreover, compared with the typically used uniform sampling scheme, the proposed semantic hash sampling scheme can achieve 67% lower mean squared error in recovering the sensing parameters. In addition, experiment results demonstrate that the amplitude response matrix of the RIS enables the encryption of the sensing data.