论文标题
成对比较中的完美采样
Perfect Sampling from Pairwise Comparisons
论文作者
论文摘要
在这项工作中,我们研究了如何从离散分布的$ \ mathcal {d} $中有效地获得完美的样本,仅访问其支持元素的成对比较。具体来说,我们假设访问样品$(x,s)$,其中$ s $是从分布上绘制的$ \ mathcal {q} $(指示要比较的元素),并且从条件分布$ \ nathcal {d} _s $中获取$ x $(指示比较的赢得$ y $ y $ y $ y $ y $ y y $ y $ y $ y $ y $ y。我们主要关注对所有集合$ s $的成对比较的情况。我们设计了一个马尔可夫链,其固定分布与$ \ Mathcal {d} $相吻合,并使用过去的耦合技术给出算法以获取精确的样品。但是,该算法的样本复杂性取决于分布$ \ Mathcal {d} $的结构,甚至可以在许多自然情况下支持$ \ Mathcal {d} $的指数。我们的主要贡献是提供有效的精确采样算法,其复杂性不取决于$ \ Mathcal {d} $的结构。为此,我们给出了一个参数马尔可夫链,鉴于固定分布的近似值,它可以更快地混合。我们可以使用来自成对比较算法的有效学习获得这样的近似值(Shah等,JMLR 17,2016)。我们从马尔可夫链中加速采样的技术,其固定分布近似是简单的,一般的,可能是独立的。
In this work, we study how to efficiently obtain perfect samples from a discrete distribution $\mathcal{D}$ given access only to pairwise comparisons of elements of its support. Specifically, we assume access to samples $(x, S)$, where $S$ is drawn from a distribution over sets $\mathcal{Q}$ (indicating the elements being compared), and $x$ is drawn from the conditional distribution $\mathcal{D}_S$ (indicating the winner of the comparison) and aim to output a clean sample $y$ distributed according to $\mathcal{D}$. We mainly focus on the case of pairwise comparisons where all sets $S$ have size 2. We design a Markov chain whose stationary distribution coincides with $\mathcal{D}$ and give an algorithm to obtain exact samples using the technique of Coupling from the Past. However, the sample complexity of this algorithm depends on the structure of the distribution $\mathcal{D}$ and can be even exponential in the support of $\mathcal{D}$ in many natural scenarios. Our main contribution is to provide an efficient exact sampling algorithm whose complexity does not depend on the structure of $\mathcal{D}$. To this end, we give a parametric Markov chain that mixes significantly faster given a good approximation to the stationary distribution. We can obtain such an approximation using an efficient learning from pairwise comparisons algorithm (Shah et al., JMLR 17, 2016). Our technique for speeding up sampling from a Markov chain whose stationary distribution is approximately known is simple, general and possibly of independent interest.