论文标题

深图聚类的调查:分类法,挑战,应用和开放资源

A Survey of Deep Graph Clustering: Taxonomy, Challenge, Application, and Open Resource

论文作者

Liu, Yue, Xia, Jun, Zhou, Sihang, Yang, Xihong, Liang, Ke, Fan, Chenchen, Zhuang, Yan, Li, Stan Z., Liu, Xinwang, He, Kunlun

论文摘要

旨在将图中的节点分为几个不同的群集的图形聚类是一项基本而挑战的任务。从深度学习的强大代表能力中受益,深度图聚类方法近年来取得了巨大的成功。但是,相应的调查文件相对较少,即将摘要该领域。通过这种动机,我们对深图聚类进行了全面的调查。首先,我们在该领域介绍了公式化的定义,评估和发展。其次,根据四个不同的标准,包括图形类型,网络体系结构,学习范式和聚类方法,提出了深图聚类方法的分类学。第三,我们通过广泛的实验仔细分析了现有方法,并从五个角度总结了挑战和机会,包括图数据质量,稳定性,可扩展性,辨别能力和未知的群集编号。此外,还提出了深度图聚类方法在六个领域中的应用,包括计算机视觉,自然语言处理,推荐系统,社交网络分析,生物信息学和医学科学。最后但并非最不重要的一点是,本文提供了开放的资源支持,包括1)collection(\ url {https://github.com/yueliu19999/awesome-deep-deep-graph-clustering}) (\ url {https://github.com/marigoldwu/a-unified-framework-for-for-deep-attribute-graph-clustering})深图集群。我们希望这项工作可以作为快速指南,并帮助研究人员克服这个充满活力的领域的挑战。

Graph clustering, which aims to divide nodes in the graph into several distinct clusters, is a fundamental yet challenging task. Benefiting from the powerful representation capability of deep learning, deep graph clustering methods have achieved great success in recent years. However, the corresponding survey paper is relatively scarce, and it is imminent to make a summary of this field. From this motivation, we conduct a comprehensive survey of deep graph clustering. Firstly, we introduce formulaic definition, evaluation, and development in this field. Secondly, the taxonomy of deep graph clustering methods is presented based on four different criteria, including graph type, network architecture, learning paradigm, and clustering method. Thirdly, we carefully analyze the existing methods via extensive experiments and summarize the challenges and opportunities from five perspectives, including graph data quality, stability, scalability, discriminative capability, and unknown cluster number. Besides, the applications of deep graph clustering methods in six domains, including computer vision, natural language processing, recommendation systems, social network analyses, bioinformatics, and medical science, are presented. Last but not least, this paper provides open resource supports, including 1) a collection (\url{https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering}) of state-of-the-art deep graph clustering methods (papers, codes, and datasets) and 2) a unified framework (\url{https://github.com/Marigoldwu/A-Unified-Framework-for-Deep-Attribute-Graph-Clustering}) of deep graph clustering. We hope this work can serve as a quick guide and help researchers overcome challenges in this vibrant field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源