论文标题

密度跳跃,以配对等离子体中的无碰撞冲击:允许的解决方案

Density jump for oblique collisionless shocks in pair plasmas: allowed solutions

论文作者

Bret, Antoine, Narayan, Ramesh

论文摘要

血浆中的冲击波通常涉及使用磁流失动力学(MHD)。然而,MHD需要假设短的平均自由路径,这在无碰撞等离子体中无法实现。最近,对于配对等离子体,我们设计了一个模型,允许在类似MHD的形式主义中考虑动力学效应。它依赖于越过前部时产生的各向异性的估计值,随后评估了下游该各向异性的稳定性。我们解决了平行,垂直和开关冲击的模型。在这里,我们通过任意治疗但面向定向磁场的问题来处理所有这些情况之间的桥接。即使提出的形式主义对于各向异性上游温度有效,但仅解决了上游的情况。我们发现不属于MHD目录的一部分的额外解决方案,并且在准平行,高度磁化状态下的密度跳跃大幅较小。鉴于计算的复杂性,这项工作主要致力于表示我们模型的数学方面。即将发表的文章将致力于这里定义的冲击物理学。

Shockwaves in plasma are usually dealt with using Magnetohydrodynamics (MHD). Yet, MHD entails the assumption of a short mean free path, which is not fulfilled in a collisionless plasma. Recently, for pair plasmas, we devised a model allowing to account for kinetic effects within an MHD-like formalism. Its relies on an estimate of the anisotropy generated when crossing the front, with a subsequent assessment of the stability of this anisotropy in the downstream. We solved our model for parallel, perpendicular and switch-on shocks. Here we bridge between all these cases by treating the problem of an arbitrarily, but coplanar, oriented magnetic field. Even though the formalism presented is valid for anisotropic upstream temperatures, only the case of a cold upstream is solved. We find extra solutions which are not part of the MHD catalog, and a density jump that is notably less in the quasi parallel, highly magnetized, regime. Given the complexity of the calculations, this work is mainly devoted to the presentation of the mathematical aspect of our model. A forthcoming article will be devoted to the physics of the shocks here defined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源