论文标题

基于自适应事件的数据转换器,用于边缘的始终生物医学应用

An Adaptive Event-based Data Converter for Always-on Biomedical Applications at the Edge

论文作者

Sharifshazileh, Mohammadali, Indiveri, Giacomo

论文摘要

典型的生物信号处理前端旨在最大程度地提高记录数据的质量,以允许忠实地复制信号以进行监视和离线处理。这导致了具有相对较大面积和功耗数字的设计。但是,只要不损害生物医学应用的可穿戴设备,不一定需要重现高度准确的生物信号记录记录,前提是其端到端分类或异常检测性能不会受到损害。在这种情况下,我们提出了一个自适应异步增量调节器(ADM)电路,旨在用基于事件的表示信号来编码信号,最适合低功率在线尖峰神经网络处理器。这项工作的新方面是ADM的自适应阈值特征,它允许电路调节并最大程度地减少信号的振幅和噪声特性所产生的事件速率。我们描述了电路的基本操作模式,并通过实验结果对其进行验证,并表征了其具有自适应阈值属性的新电路。

Typical bio-signal processing front-ends are designed to maximize the quality of the recorded data, to allow faithful reproduction of the signal for monitoring and off-line processing. This leads to designs that have relatively large area and power consumption figures. However, wearable devices for always-on biomedical applications do not necessarily require to reproduce highly accurate recordings of bio-signals, provided their end-to-end classification or anomaly detection performance is not compromised. Within this context, we propose an adaptive Asynchronous Delta Modulator (ADM) circuit designed to encode signals with an event-based representation optimally suited for low-power on-line spiking neural network processors. The novel aspect of this work is the adaptive thresholding feature of the ADM, which allows the circuit to modulate and minimize the rate of events produced with the amplitude and noise characteristics of the signal. We describe the circuit's basic mode of operation, we validate it with experimental results, and characterize the new circuits that endow it with its adaptive thresholding properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源