论文标题

令人兴奋的液体马赛克

The excitable fluid mosaic

论文作者

Heimburg, Thomas

论文摘要

Singer&Nicolson的流体镶嵌模型提出,生物膜由液体脂质层组成,将整体蛋白嵌入其中。脂质膜充当二维液体,其中蛋白质可以扩散和相互作用。直到今天,这种观点似乎非常合理,并且是文献中的主要图片。但是,生物膜的熔融过渡存在较大的熔化过渡,低于生理温度,直至到体温。由于在体温下发现它们,因此Singer&Nicolson没有进一步关注熔融过程。但这是一个有效的视图,只要什么都没有发生。过渡温度可能会受到膜张力,pH,离子强度和其他变量的影响。因此,生理温度高于此过渡通常是不正确的。通过更改密集变量来控制膜状态的控制使膜整体上可兴奋。人们期望相位行为和结构域的形成,从而导致蛋白质分类和膜功能变化。因此,脂质成为生物膜的活性成分。熔化过渡会影响膜的弹性常数。这允许在神经中产生传播脉冲,并在脂质膜中形成类似离子通道的孔。在这里,我们表明,除了流动的马赛克概念之外,还有许多可激发现象超出了歌手和尼科尔森的原始图片。

The Fluid Mosaic Model by Singer & Nicolson proposes that biological membranes consist of a fluid lipid layer into which integral proteins are embedded. The lipid membrane acts as a two-dimensional liquid in which the proteins can diffuse and interact. Until today, this view seems very reasonable and is the predominant picture in the literature. However, there exist broad melting transitions in biomembranes some 10-20 degrees below physiological temperatures that reach up to body temperature. Since they are found below body temperature, Singer & Nicolson did not pay any further attention to the melting process. But this is a valid view only as long as nothing happens. The transition temperature can be influenced by membrane tension, pH, ionic strength and other variables. Therefore, it is not generally correct that the physiological temperature is above this transition. The control over the membrane state by changing the intensive variables renders the membrane as a whole excitable. One expects phase behavior and domain formation that leads to protein sorting and changes in membrane function. Thus, the lipids become an active ingredient of the biological membrane. The melting transition affects the elastic constants of the membrane. This allows for the generation of propagating pulses in nerves and the formation of ion-channel-like pores in the lipid membranes. Here we show that on top of the fluid mosaic concept there exists a wealth of excitable phenomena that go beyond the original picture of Singer & Nicolson.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源