论文标题

Deltanet:Covid-19诊断的有条件医疗报告生成

DeltaNet:Conditional Medical Report Generation for COVID-19 Diagnosis

论文作者

Wu, Xian, Yang, Shuxin, Qiu, Zhaopeng, Ge, Shen, Yan, Yangtian, Wu, Xingwang, Zheng, Yefeng, Zhou, S. Kevin, Xiao, Li

论文摘要

快速筛查和诊断对于19日患者治疗至关重要。除了黄金标准RT-PCR外,X射线和CT等放射学成像还可以作为患者筛查和随访的重要手段。但是,由于患者数量过多,写作报告成为放射科医生的沉重负担。为了减少放射科医生的工作量,我们建议Deltanet自动生成医疗报告。与使用编码器生成报告的典型图像字幕方法不同,Deltanet应用了条件生成过程。特别是,鉴于医疗图像,Deltanet采用三个步骤来生成报告:1)首先检索相关的医学报告,即来自相同或相似患者的历史报告; 2)然后比较检索的图像和当前图像以找到差异; 3)最终生成一个新报告,以根据条件报告来适应已确定的差异。我们在Covid-19数据集上评估了Deltanet,Deltanet优于最先进的方法。除199年外,还可以将提出的Deltanet应用于其他疾病。我们在公共IU-XRAY上验证了其概括功能,并验证了与胸部相关疾病的模拟CXR数据集。代码可在\ url {https://github.com/lx-doctorai1/deltanet}中找到。

Fast screening and diagnosis are critical in COVID-19 patient treatment. In addition to the gold standard RT-PCR, radiological imaging like X-ray and CT also works as an important means in patient screening and follow-up. However, due to the excessive number of patients, writing reports becomes a heavy burden for radiologists. To reduce the workload of radiologists, we propose DeltaNet to generate medical reports automatically. Different from typical image captioning approaches that generate reports with an encoder and a decoder, DeltaNet applies a conditional generation process. In particular, given a medical image, DeltaNet employs three steps to generate a report: 1) first retrieving related medical reports, i.e., the historical reports from the same or similar patients; 2) then comparing retrieved images and current image to find the differences; 3) finally generating a new report to accommodate identified differences based on the conditional report. We evaluate DeltaNet on a COVID-19 dataset, where DeltaNet outperforms state-of-the-art approaches. Besides COVID-19, the proposed DeltaNet can be applied to other diseases as well. We validate its generalization capabilities on the public IU-Xray and MIMIC-CXR datasets for chest-related diseases. Code is available at \url{https://github.com/LX-doctorAI1/DeltaNet}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源