论文标题
引入Tigress-NCR:I。多相星际培养基和恒星形成速率的共同调节
Introducing TIGRESS-NCR: I. Co-Regulation of the Multiphase Interstellar Medium and Star Formation Rates
论文作者
论文摘要
巨大的年轻恒星是在星际介质(ISM)中维持多相结构和湍流的主要能源,没有这种“反馈”恒星形成速率(SFR)将比观察到的要高得多。恒星反馈通过ISM的快速能量损失导致SFR和ISM状态的共同调节。解决此问题的现实方法应解决ISM的动态演变,包括恒星形成,以及反馈能量的输入自我兼容,准确。在这里,我们介绍Tigress-NCR数值框架,其中紫外线辐射,超新星,冷却和加热过程以及重力崩溃是明确建模的。我们使用一种自适应射线跟踪方法来从以水槽颗粒代表的星形簇中转移紫外线辐射,这是灰尘和气体的衰减。我们求解光子驱动的化学方程式,以确定H(时间依赖性)和含C/O的物种(稳态)的丰度,然后将其设置为自以为是的冷却和加热速率。应用这些方法,我们提出了高分辨率的磁性水力动力学模拟,以差异旋转的局部银河系盘,代表附近恒星形成星系的典型条件。我们分析了ISM属性和相分布,并与现有的多波长银河观测表现出了良好的一致性。我们测量平面压力组件(湍流,热和磁性)以及重量,表明垂直动力学平衡保持。我们量化压力成分与SFR表面密度的比率,我们称之为反馈产量。 Tigress-NCR框架将允许广泛的参数探索,包括低金属性系统。
Massive, young stars are the main source of energy that maintains multiphase structure and turbulence in the interstellar medium (ISM), and without this "feedback" the star formation rate (SFR) would be much higher than is observed. Rapid energy loss in the ISM and efficient energy recovery by stellar feedback lead to co-regulation of SFRs and the ISM state. Realistic approaches to this problem should solve the dynamical evolution of the ISM, including star formation, and the input of feedback energy self-consistently and accurately. Here, we present the TIGRESS-NCR numerical framework, in which UV radiation, supernovae, cooling and heating processes, and gravitational collapse are modeled explicitly. We use an adaptive ray tracing method for UV radiation transfer from star clusters represented by sink particles, accounting for attenuation by dust and gas. We solve photon-driven chemical equations to determine the abundances of H (time-dependent) and C/O-bearing species (steady-state), which then set cooling and heating rates self-consistently. Applying these methods, we present high-resolution magnetohydrodynamics simulations of differentially rotating local galactic disks representing typical conditions of nearby star-forming galaxies. We analyze ISM properties and phase distributions and show good agreement with existing multiwavelength galactic observations. We measure midplane pressure components (turbulent, thermal, and magnetic) and the weight, demonstrating that vertical dynamical equilibrium holds. We quantify the ratios of pressure components to the SFR surface density, which we call the feedback yields. The TIGRESS-NCR framework will allow for a wide range of parameter exploration, including low metallicity system.