论文标题

对多项式混乱扩展的投影追求改编

Projection pursuit adaptation on polynomial chaos expansions

论文作者

Zeng, Xiaoshu, Ghanem, Roger

论文摘要

目前的工作解决了使用不确定性定量(UQ)的工具在高维参数空间中准确随机近似的问题。最近提出了基础适应方法及其在多项式混乱膨胀(PCE)中的加速算法,以构建适合特定含量的利益量的低维近似值(QOI)。本文解决了这些适应性的一个困难,即它们依赖于正交点采样,这限制了潜在昂贵样品的可重复性。投影追踪(PP)是一种统计工具,可以在高维数据中找到``有趣''投影,从而绕开了维度的诅咒。在目前的工作中,我们将基础适应和投影追求回归(PPR)的基本思想结合在一起,提出了一种新颖的方法,以同时学习从给定数据中学习最佳的低维空间和PCE表示。虽然这种投影追求适应(PPA)可以完全由数据驱动,但构造的近似值表现出均方根收敛到基础管理方程的解,因此受到相同的物理约束。在钻孔问题和结构动力学问题上证明了所提出的方法,证明了该方法的多功能性及其能够以有限的数据来发现具有高精度的低维歧管的能力。此外,该方法可以在重复使用相同数据集的同时学习不同量的兴趣的替代模型。

The present work addresses the issue of accurate stochastic approximations in high-dimensional parametric space using tools from uncertainty quantification (UQ). The basis adaptation method and its accelerated algorithm in polynomial chaos expansions (PCE) were recently proposed to construct low-dimensional approximations adapted to specific quantities of interest (QoI). The present paper addresses one difficulty with these adaptations, namely their reliance on quadrature point sampling, which limits the reusability of potentially expensive samples. Projection pursuit (PP) is a statistical tool to find the ``interesting'' projections in high-dimensional data and thus bypass the curse-of-dimensionality. In the present work, we combine the fundamental ideas of basis adaptation and projection pursuit regression (PPR) to propose a novel method to simultaneously learn the optimal low-dimensional spaces and PCE representation from given data. While this projection pursuit adaptation (PPA) can be entirely data-driven, the constructed approximation exhibits mean-square convergence to the solution of an underlying governing equation and is thus subject to the same physics constraints. The proposed approach is demonstrated on a borehole problem and a structural dynamics problem, demonstrating the versatility of the method and its ability to discover low-dimensional manifolds with high accuracy with limited data. In addition, the method can learn surrogate models for different quantities of interest while reusing the same data set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源