论文标题
绝热猫状态的拓扑动态
Topological dynamics of adiabatic cat states
论文作者
论文摘要
我们考虑一个量子拓扑转换器,通过将量子耦合到两个慢速谐波模式来实现。这种系统的动力学是拓扑抽动的量子类似物。我们的量子机械描述表明,初始状态通常演变成两个绝热状态的叠加。值和模式之间耦合的拓扑性质将这两个组件分开分开:对于每个组件,以量化速率的能量传递发生在两个量子模式之间,这是两个组件的相反方向,这使人联想到拓扑泵。我们表示通过模式的绝热猫状态的量子来区分的两个量子绝热状态的叠加。我们表明,拓扑耦合增强了量子和模式之间的纠缠,我们揭示了量子或fubini-study指标在这种纠缠表征中的作用。
We consider a quantum topological frequency converter, realized by coupling a qubit to two slow harmonic modes. The dynamics of such a system is the quantum analog of topological pumping. Our quantum mechanical description shows that an initial state generically evolves into a superposition of two adiabatic states. The topological nature of the coupling between the qubit and the modes splits these two components apart in energy: for each component, an energy transfer at a quantized rate occurs between the two quantum modes, in opposite directions for the two components, reminiscent of the topological pumping. We denote such a superposition of two quantum adiabatic states distinguishable through measures of the modes' energy an adiabatic cat state. We show that the topological coupling enhances the entanglement between the qubit and the modes, and we unveil the role of the quantum or Fubini-Study metric in the characterization of this entanglement.