论文标题

海上计算机视觉(MACVI)的第一届研讨会2023:挑战结果

1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results

论文作者

Kiefer, Benjamin, Kristan, Matej, Perš, Janez, Žust, Lojze, Poiesi, Fabio, Andrade, Fabio Augusto de Alcantara, Bernardino, Alexandre, Dawkins, Matthew, Raitoharju, Jenni, Quan, Yitong, Atmaca, Adem, Höfer, Timon, Zhang, Qiming, Xu, Yufei, Zhang, Jing, Tao, Dacheng, Sommer, Lars, Spraul, Raphael, Zhao, Hangyue, Zhang, Hongpu, Zhao, Yanyun, Augustin, Jan Lukas, Jeon, Eui-ik, Lee, Impyeong, Zedda, Luca, Loddo, Andrea, Di Ruberto, Cecilia, Verma, Sagar, Gupta, Siddharth, Muralidhara, Shishir, Hegde, Niharika, Xing, Daitao, Evangeliou, Nikolaos, Tzes, Anthony, Bartl, Vojtěch, Špaňhel, Jakub, Herout, Adam, Bhowmik, Neelanjan, Breckon, Toby P., Kundargi, Shivanand, Anvekar, Tejas, Desai, Chaitra, Tabib, Ramesh Ashok, Mudengudi, Uma, Vats, Arpita, Song, Yang, Liu, Delong, Li, Yonglin, Li, Shuman, Tan, Chenhao, Lan, Long, Somers, Vladimir, De Vleeschouwer, Christophe, Alahi, Alexandre, Huang, Hsiang-Wei, Yang, Cheng-Yen, Hwang, Jenq-Neng, Kim, Pyong-Kun, Kim, Kwangju, Lee, Kyoungoh, Jiang, Shuai, Li, Haiwen, Ziqiang, Zheng, Vu, Tuan-Anh, Nguyen-Truong, Hai, Yeung, Sai-Kit, Jia, Zhuang, Yang, Sophia, Hsu, Chih-Chung, Hou, Xiu-Yu, Jhang, Yu-An, Yang, Simon, Yang, Mau-Tsuen

论文摘要

1 $^{\ text {st}} $关于海上计算机视觉(MACVI)2023的研讨会,重点关注无人机的海上计算机愿景(UAV)和无人驾驶的地面车辆(USV),并在该域中组织了几个域名,并在该域中组织了几个suballenges:(i)基于无人机的对象(I II)基于Maritime usime usime usime Marit(Marit Marit Marit Maritime Maritime Maritime Maritime Marit)细分和(iv)基于USV的海上障碍物检测。亚挑战者基于Seadronessee和Mods基准。该报告总结了单个子挑战的主要发现,并引入了一个新的基准,称为Seadronessee对象检测V2,该基准通过包括更多类和录像来扩展以前的基准。我们提供统计和定性分析,并评估超过130份提交的表现最佳方法的趋势。该方法在附录中总结。数据集,评估代码和排行榜可在https://seadronessee.cs.uni-tuebingen.de/macvi上公开获得。

The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源