论文标题
通过网络模块化分区,链接计数数据驱动的静态流量分配模型
Link Count Data-driven Static Traffic Assignment Models Through Network Modularity Partitioning
论文作者
论文摘要
准确的静态交通分配模型是评估战略运输政策的重要工具。在本文中,我们提出了一种通过网络模块化来分区道路网络的新方法,以从大道路系统上的环路检测器数据中产生数据驱动的静态交通分配模型。分区的使用允许估计仅流量计数的原点用途需求矩阵的关键模型输入。以前的基于网络层析成像的需求估计技术受网络大小的限制。分区的量将原点用途估计优化问题更改为不同级别的计算难度。测试了利用分区的不同方法,一种方法将道路网络变成了隔板的规模以及使网络完好无损的其他方法。应用于英格兰战略道路网络和其他测试网络的子网,我们对堕落案例的结果显示流动性和旅行时间错误是合理的,并且少量退化。非分类案例的结果表明,与非分区案例相比,使用大型分区时,模型预测中的相似误差可以得到较低的计算要求。这项工作可用于提高国家道路系统规划和基础设施模型的有效性。
Accurate static traffic assignment models are important tools for the assessment of strategic transportation policies. In this article we present a novel approach to partition road networks through network modularity to produce data-driven static traffic assignment models from loop detector data on large road systems. The use of partitioning allows the estimation of the key model input of Origin-Destination demand matrices from flow counts alone. Previous network tomography-based demand estimation techniques have been limited by the network size. The amount of partitioning changes the Origin-Destination estimation optimisation problems to different levels of computational difficulty. Different approaches to utilising the partitioning were tested, one which degenerated the road network to the scale of the partitions and others which left the network intact. Applied to a subnetwork of England's Strategic Road Network and other test networks, our results for the degenerate case showed flow and travel time errors are reasonable with a small amount of degeneration. The results for the non-degenerate cases showed that similar errors in model prediction with lower computation requirements can be obtained when using large partitions compared with the non-partitioned case. This work could be used to improve the effectiveness of national road systems planning and infrastructure models.