论文标题
Roboflow 100:丰富的多域对象检测基准测试
Roboflow 100: A Rich, Multi-Domain Object Detection Benchmark
论文作者
论文摘要
对象检测模型的评估通常是通过优化单个度量的,例如地图,在一组固定的数据集上,例如Microsoft Coco和Pascal VOC。由于图像检索和注释成本,这些数据集主要由网络上的图像组成,并不代表许多在实践中建模的现实生活域,例如卫星,微观和游戏,使得很难断言该模型学到的概括程度。我们介绍了由100个数据集,7个图像域,224,714张图像和805个级别标签组成的Roboflow-100(RF100),具有超过11,170个标签时间。我们从90,000多个公共数据集,6000万个公共图像中得出了RF100,这些图像在Web应用程序Roboflow Universe的公开赛中被计算机视觉从业人员积极组装和标记。通过发布RF100,我们旨在提供数据集的语义多样性,多域基准测试,以帮助研究人员使用现实生活数据测试其模型的通用性。 RF100下载和基准复制可在GitHub上获得。
The evaluation of object detection models is usually performed by optimizing a single metric, e.g. mAP, on a fixed set of datasets, e.g. Microsoft COCO and Pascal VOC. Due to image retrieval and annotation costs, these datasets consist largely of images found on the web and do not represent many real-life domains that are being modelled in practice, e.g. satellite, microscopic and gaming, making it difficult to assert the degree of generalization learned by the model. We introduce the Roboflow-100 (RF100) consisting of 100 datasets, 7 imagery domains, 224,714 images, and 805 class labels with over 11,170 labelling hours. We derived RF100 from over 90,000 public datasets, 60 million public images that are actively being assembled and labelled by computer vision practitioners in the open on the web application Roboflow Universe. By releasing RF100, we aim to provide a semantically diverse, multi-domain benchmark of datasets to help researchers test their model's generalizability with real-life data. RF100 download and benchmark replication are available on GitHub.