论文标题

Specognitor:通过预测感知的符号执行来识别幽灵漏洞

Specognitor: Identifying Spectre Vulnerabilities via Prediction-Aware Symbolic Execution

论文作者

Sahraee, Ali

论文摘要

Spectre攻击利用投机执行,以泄漏敏感信息。在过去的几年中,已经提出了许多静态侧通道检测器,以检测出在投机执行的情况下的缓存泄漏。但是,这些技术要么忽略分支预测机制,要么检测不适合检测新模式的静态预定义模式,或者导致错误的负面因素。 在本文中,我们说明了预测不可能的最先进方法的弱点。我们提出了Specognitor,这是一种新颖的预测感知符号执行引擎,以探索程序路径并检测细微的幽灵变体1和变体2漏洞。我们提出了一种动态模式检测机制,以解释现有和未来的漏洞。我们的实验结果表明,Specognitor在分析现实世界加密程序W.R.T.的有效性和效率不同的处理器家庭。

Spectre attacks exploit speculative execution to leak sensitive information. In the last few years, a number of static side-channel detectors have been proposed to detect cache leakage in the presence of speculative execution. However, these techniques either ignore branch prediction mechanism, detect static pre-defined patterns which is not suitable for detecting new patterns, or lead to false negatives. In this paper, we illustrate the weakness of prediction-agnostic state-of-the-art approaches. We propose Specognitor, a novel prediction-aware symbolic execution engine to soundly explore program paths and detect subtle spectre variant 1 and variant 2 vulnerabilities. We propose a dynamic pattern detection mechanism to account for both existing and future vulnerabilities. Our experimental results show the effectiveness and efficiency of Specognitor in analyzing real-world cryptographic programs w.r.t. different processor families.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源