论文标题
立方准类别的严格化
Rigidification of cubical quasi-categories
论文作者
论文摘要
我们构建了刚化函数的立方类似物,从准类别到Joyal和Lurie工作中存在的简单类别。我们将函数定义为doherty-kapulkin-lindsey-sattler的立方集类别的函子,为(小)简单类别的类别。我们表明,这种刚化的函子在立方集(四个作者称为)与简单类别上的伯格纳模型结构之间建立了Quillen等效性。我们遵循钉子和尖刺的刚化方法,将其项链的框架调整为立方体环境。
We construct a cubical analogue of the rigidification functor from quasi-categories to simplicial categories present in the work of Joyal and Lurie. We define a functor from the category of cubical sets of Doherty-Kapulkin-Lindsey-Sattler to the category of (small) simplicial categories. We show that this rigidification functor establishes a Quillen equivalence between the Joyal model structure on cubical sets (as it is called by the four authors) and Bergner's model structure on simplicial categories. We follow the approach to rigidification of Dugger and Spivak, adapting their framework of necklaces to the cubical setting.