论文标题

Shimura曲线及其周期性的地球持续分数:$(2,3,7)$ - 三角形组的情况

Geodesic continued fraction for Shimura curves and its periodicity: the case of $(2,3,7)$-triangle group

论文作者

Bekki, Hohto

论文摘要

在本文中,我们研究了从$(2,3,7)$ - 三角形组的Shimura曲线的情况下,地球持续的分数。我们使用Shimura曲线上的大地测量学编码进行了一定的持续分数扩展,并证明了扩展的Lagrange类型周期定理,该定理定理捕获了$ \ Mathbb {Q}(Q}(Q}(\ cos(cos)(\ cos/2 qout/2oud/7)),$ \ mathbb {Q}(Qous/7)的基本相对单位$ \ cos(qus/7)与一组相对单位。我们还讨论了这些持续分数的融合。

In this paper we study the geodesic continued fraction in the case of the Shimura curve coming from the $(2,3,7)$-triangle group. We construct a certain continued fraction expansion of real numbers using the so-called coding of the geodesics on the Shimura curve, and prove the Lagrange type periodicity theorem for the expansion which captures the fundamental relative units of quadratic extensions of $\mathbb{Q}(\cos(2π/7))$ with rank one relative unit groups. We also discuss the convergence of these continued fractions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源