论文标题
部分可观测时空混沌系统的无模型预测
On DNA Codes Over the Non-Chain Ring $\mathbb{Z}_4+u\mathbb{Z}_4+u^2\mathbb{Z}_4$ with $u^3=1$
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this paper, we present a novel design strategy of DNA codes with length $3n$ over the non-chain ring $R=\mathbb{Z}_4+u\mathbb{Z}_4+u^2\mathbb{Z}_4$ with $64$ elements and $u^3=1$, where $n$ denotes the length of a code over $R$. We first study and analyze a distance conserving map defined over the ring $R$ into the length-$3$ DNA sequences. Then, we derive some conditions on the generator matrix of a linear code over $R$, which leads to a DNA code with reversible, reversible-complement, homopolymer $2$-run-length, and $\frac{w}{3n}$-GC-content constraints for integer $w$ ($0\leq w\leq 3n$). Finally, we propose a new construction of DNA codes using Reed-Muller type generator matrices. This allows us to obtain DNA codes with reversible, reversible-complement, homopolymer $2$-run-length, and $\frac{2}{3}$-GC-content constraints.