论文标题

紧凑的空气凸出孔循环多通电池中2 MJ飞秒脉冲的光谱扩展

Spectral broadening of 2 mJ femtosecond pulses in a compact air-filled convex-concave multi-pass cell

论文作者

Omar, Alan, Vogel, Tim, Hoffmann, Martin, Saraceno, Clara J.

论文摘要

基于多通电池(MPC)的时间脉冲压缩机在过去几年中已经成为一种强大而多才多艺的解决方案,用于从基于YB的高功率超快激光器的长脉冲固有问题。但是,仅在复杂的设置中实现了高能(通常超过100个UJ)脉冲的光谱拓宽,即在大且昂贵的,压力控制的真空室中,以避免对镜子的强烈注意,电离和损坏。在这里,我们介绍了在周围空气中运行的简单而紧凑的多通电池中2个MJ脉冲的光谱扩展。我们使用凸形 - 孔孔(CX/CC)设计,而不是带有凹形孔洞(CC/CC)镜的传统Herriott电池,在该设计中,横梁始终保持较大,既可以使损坏最小化并在环境空气中运行。我们证明了以100 kHz的重复速率(平均功率为200 w)从2.1 nm(脉冲持续时间为670 fs)到24.5 nm的光谱范围,以100 kHz的重复速率(平均功率为200 w),光谱扩大,支持133 fs脉冲,具有96%的传输效率。我们显示了这些脉冲降至134 fs的可压缩性,并验证梁的光谱均匀性与先前报道的CC/CC设计相似。据我们所知,这是CX/CC MPC压缩机的第一个报告,该报告在空气中高脉冲能量下运行。由于其简单性,占地面积和低成本,我们认为这次演示将对超快激光社区产生重大影响。

Multi-pass cell (MPC) based temporal pulse compressors have emerged in the last years as a powerful and versatile solution to the intrinsic issue of long pulses from Yb-based high-power ultrafast lasers. However, the spectral broadening of high-energy (typically more than 100 uJ) pulses has only been realized in complex setups, i.e., in large and costly, pressure-controlled vacuum chambers to avoid strong focusing, ionization, and damage on the mirrors. Here, we present spectral broadening of 2 mJ pulses in a simple and compact (60 cm long) multi-pass cell operated in ambient air. Instead of the traditional Herriott cell with concave-concave (CC/CC) mirrors, we use a convex-concave (CX/CC) design, where the beam stays large at all times allowing both to minimize damage and operate in ambient air. We demonstrate spectral broadening of 2.1 mJ pulses at 100 kHz repetition rate (200 W of average power) from 2.1 nm (pulse duration of 670 fs) to a spectral bandwidth of 24.5 nm, supporting 133 fs pulses with 96% transmission efficiency. We show the compressibility of these pulses down to 134 fs, and verify that the spectral homogeneity of the beam is similar to previously reported CC/CC designs. To the best of our knowledge, this is the first report of a CX/CC MPC compressor, operated at high pulse energies in air. Because of its simplicity, small footprint and low cost, we believe this demonstration will have significant impact in the ultrafast laser community.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源