论文标题
几乎是Kähler几何形状的典型浸入
Canoncial Submersions in Nearly Kähler Geometry
论文作者
论文摘要
我们探索通过与平行偏斜扭转的连接可简化的自由度表示引入的浸没。给出了延伸以前较少一般结果的淹没定理。作为我们的主要应用,我们表明平行3- $(α,δ)$ - sasaki歧管将1维浸入几乎kählerorbifolds上。作为次要应用,我们谴责某些类别的Kähler歧管淹没在QuaternionicKähler歧管上。这种新的证明为基础上的Quaternionic结构提供了直接表达。
We explore submersions introduced by reducible holonomy representations of connections with parallel skew torsion. A submersion theorem extending previous less general results is given. As our main application we show that parallel 3-$(α,δ)$-Sasaki manifolds admit 1-dimensional submersions onto nearly Kähler orbifolds. As a secondary application we reprove that a certain class of nearly Kähler manifolds submerges onto quaternionic Kähler manifolds. This new proof gives an direct expression for the quaternionic structure on the base.