论文标题
从2型糖尿病的短期闭环数据中估算个性化的基底胰岛素剂量
Estimating a Personalized Basal Insulin Dose from Short-Term Closed-Loop Data in Type 2 Diabetes
论文作者
论文摘要
在2型糖尿病(T2D)治疗中,找到安全有效的基础胰岛素剂量是一个挑战。剂量反应是高度个性的,为了确保安全,T2D滴定的人通过缓慢增加胰岛素剂量以满足治疗靶标的滴定。这种滴定可能需要几个月的时间。为了简化和加速过程,我们使用用于初始滴定的短期人造胰腺(AP)处理,并将其应用于诊断工具。具体而言,我们提出了一种方法,可以自动从AP收集的闭环数据中自动估算个性化的每日基底胰岛素。基于随机仿真模型的AP-DATA,我们采用了连续的discrete扩展的Kalman滤波器和最大似然方法来估算100个虚拟人员的简单剂量反应模型中的参数。使用确定的模型,我们计算每日剂量的基底胰岛素,以满足每个人的治疗靶标。我们测试个性化剂量并评估针对临床参考值的治疗结果。在测试的模拟设置中,提出的方法是可行的。但是,更广泛的测试将揭示它是否可以被视为可以安全的临床实施。
In type 2 diabetes (T2D) treatment, finding a safe and effective basal insulin dose is a challenge. The dose-response is highly individual and to ensure safety, people with T2D titrate by slowly increasing the daily insulin dose to meet treatment targets. This titration can take months. To ease and accelerate the process, we use short-term artificial pancreas (AP) treatment tailored for initial titration and apply it as a diagnostic tool. Specifically, we present a method to automatically estimate a personalized daily dose of basal insulin from closed-loop data collected with an AP. Based on AP-data from a stochastic simulation model, we employ the continuous-discrete extended Kalman filter and a maximum likelihood approach to estimate parameters in a simple dose-response model for 100 virtual people. With the identified model, we compute a daily dose of basal insulin to meet treatment targets for each individual. We test the personalized dose and evaluate the treatment outcomes against clinical reference values. In the tested simulation setup, the proposed method is feasible. However, more extensive tests will reveal whether it can be deemed safe for clinical implementation.