论文标题

FCC金属中晶界阶段的通用性:高角度的案例研究[111]对称倾斜晶界

Universality of grain boundary phases in fcc metals: Case study on high-angle [111] symmetric tilt grain boundaries

论文作者

Brink, Tobias, Langenohl, Lena, Bishara, Hanna, Dehm, Gerhard

论文摘要

晶界通常表现出有序的原子结构。通过传输电子显微镜和原子计算机模拟提供了越来越多的证据,表明可能发生不同的稳定和亚稳定的晶界结构。同时,将其热力学治疗作为晶界阶段的理论进行了处理。尽管在特定材料的特定晶界处鉴定了原子结构,但是否仍然是一个悬而未决的问题,如果这些结构及其热力学过量特性是特定材料或可推广的,例如所有FCC金属。为了阐明这个问题,我们使用具有经典的原子势的原子模拟来研究Ni,Cu,Pd,Ag,Au,Au,Al和Pb中的一系列高角度[111]对称倾斜晶界。我们确实可以在所有研究的晶界中找到两个晶界阶段的家族,这些家族涵盖了大多数标准FCC材料。在可能的情况下,我们将原子结构与原子分辨率电子显微镜图像进行了比较,并发现该结构匹配。这提出了一个问题,即晶界阶段仅仅是球形包装几何形状的结果,还是特定于材料的键合物理作用。我们使用简单模型对电位对此进行了测试,发现需要中等范围的相互作用来重现原子结构,而更现实的材料模型主要影响晶界(自由)能量。除结构研究外,我们还报告了晶界的热力学过剩特性,探索它们如何影响晶界阶段的热力学稳定性,并详细介绍材料之间的共同点和差异。

Grain boundaries often exhibit ordered atomic structures. Increasing amounts of evidence have been provided by transmission electron microscopy and atomistic computer simulations that different stable and metastable grain boundary structures can occur. Meanwhile, theories to treat them thermodynamically as grain boundary phases have been developed. Whereas atomic structures were identified at particular grain boundaries for particular materials, it remains an open question if these structures and their thermodynamic excess properties are material specific or generalizable to, e.g., all fcc metals. In order to elucidate that question, we use atomistic simulations with classical interatomic potentials to investigate a range of high-angle [111] symmetric tilt grain boundaries in Ni, Cu, Pd, Ag, Au, Al, and Pb. We could indeed find two families of grain boundary phases in all of the investigated grain boundaries, which cover most of the standard fcc materials. Where possible, we compared the atomic structures to atomic-resolution electron microscopy images and found that the structures match. This poses the question if the grain boundary phases are simply the result of sphere-packing geometry or if material-specific bonding physics play a role. We tested this using simple model pair potentials and found that medium-ranged interactions are required to reproduce the atomic structures, while the more realistic material models mostly affect the grain boundary (free) energy. In addition to the structural investigation, we also report the thermodynamic excess properties of the grain boundaries, explore how they influence the thermodynamic stability of the grain boundary phases, and detail the commonalities and differences between the materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源