论文标题
相对论流体动力流的全息纠缠熵
Holographic entanglement entropy for relativistic hydrodynamic flows
论文作者
论文摘要
我们研究了近乎平衡的热状态下全息纠缠熵(HEE)的行为,这些状态是通过共形相对论流体动力流偶尔到动态黑色brane几何形状的宏观描述的。我们在边界维度D = 2,3,4中计算带状子系统的HEE,这为我们提供了对流体流和纠缠动态之间相互作用的一般定性推断。首先,我们考虑了流体动力衍生物膨胀中的零序,通过固定的黑麸皮描述了全息。在流体速度方面非扰动地工作时,我们发现,随着流体速度接近其相对论上限,紫外线调节的HEE在任意温度下表现出差异。同样,两个相对接近的子系统之间的全息相互信息在某些临界流体速度下消失,并且保持零以外。然后,我们考虑到衍生物膨胀中的一阶,以流体的激发状态计算HEE。作为一种简化的设置,我们首先在$ d = 2 $中使用非隔离动力学,其中在声音模式的存在和传播压力脉冲的情况下研究了HEE的时间演变。在d = 4中,我们发现散发性声音模式产生了额外的动力学紫外线差异,与“区域定律差异”相比,它是升值的。在d = 3中,没有观察到耗散声模式的这种差异。
We study the behaviour of holographic entanglement entropy (HEE) in near equilibrium thermal states which are macroscopically described by conformal relativistic hydrodynamic flows dual to dynamical black brane geometries. We compute HEE for strip-shaped subsystems in boundary dimensions d=2,3,4, which provides us with general qualitative inferences on the interplay between fluid flows and entanglement dynamics. At first, we consider the zeroth order in hydrodynamic derivative expansion, holographically described by stationary boosted black branes. Working non-perturbatively in fluid velocity, we find that, as the fluid velocity approaches its relativistic upper limit, the UV regulated HEE exhibits a divergence, at arbitrary temperature. Also, the holographic mutual information between two relatively close subsystems vanishes at some critical fluid velocity and remains zero beyond it. We then compute HEE in an excited state of the fluid in the presence of a sound mode, considering first order in derivative expansion. As a simplified setup, we first work with non-dissipative dynamics in $d=2$, where the time evolution of HEE is studied in the presence of the sound mode and a propagating pressure pulse. In d= 4, we find that dissipative sound modes produce an additional dynamical UV divergence which is subleading compared to `area law divergence'. No such divergence is observed for dissipative sound mode in d=3.